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This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-
squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. 
Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be 
predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to 
predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing 
synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure 
synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. 
Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the 
same environment and relative distance. This study showed that a deep learning model trained using only synthetic images 
can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic 
docking and demonstrated that the method constructed with only synthetic data was applicable in space.
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1. INTRODUCTION 

Predicting the 6 degree of freedom (6DOF) pose, that is, 

the relative position and attitude, of a spacecraft in space 

is a crucial aspect in the field of automatic rendezvous 

docking and space waste removal. Docking with space 

stations and spacecrafts facilitates the supply equipment, 

fuel, and crew. In 2020, mission extension vehicle-1 

(MEV-1) supplied fuel to Intelsat 901, which is located 

in a geostationary orbit, to increase the lifespan of the 

spacecraft (Mayfield 2021). Because this task must be 

performed automatically, research on identifying the pose 

of a spacecraft using visual sensors without a human-in-

the-loop is crucial. A software algorithm was developed to 

predict the pose of the target using light-emitting diodes 

(LEDs) was developed. The algorithm accepted images 

of targets, determined the center point of the LEDs, and 

estimated the three-dimensional (3D) relative positions and 

orientations from the two-dimensional (2D) coordinates of 

the LEDs. Software simulations with different observational 

errors and actual testbed experiments were conducted 

to determine their applicability in real environments 

(Hyun et al. 2018). Vision-based active sensors, such as 

light detection and ranging (LIDAR), are used for the pose 

determination of uncooperative targets (Opromolla et al. 

2015). However, these pose-estimation approaches require 

special sensors to be attached to the spacecraft. In contrast, 

deep learning can be used for pose estimation to dock with 

a noncooperative spacecraft using only a single camera. 

However, training deep-learning methods in outer space is 

expensive. Therefore, we constructed a virtual simulation 

environment on the ground to generate synthetic images for 

training a deep-learning model based on the unreal engine 

4 (UE4) (Sanders 2016).
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The Kelvin’s Pose Estimation Challenge (KPEC) was held at 

ESA’s Advanced Concepts Team (ACT) (Kisantal et al. 2020). 

Estimating the pose of a spacecraft for given synthetic/real 

images using deep learning is a challenging task. The KPEC 

winners used two main methods. The first method directly 

estimated the relative pose (three-dimensional position 

vector and relative orientation quaternion) of the spacecraft 

from the image using deep learning. The second method 

modeled the spacecraft and determined 2D landmark 

(key point) coordinates on images using deep learning. 

They estimated the pose of the spacecraft by associating 

the landmarks with the corresponding 3D positions in the 

spacecraft model. Proença & Gao implemented a virtual 

simulation environment to generate synthetic images. unreal 

rendered spacecrafts on-orbit datasets (URSO) was built to 

generate photos of spacecraft orbiting the Earth and was 

used for deep learning training. URSO is based on a visual 

simulation program called the UE4. The generated images 

were directly used in the ResNet model, a deep learning 

model, to predict the relative position vectors and orientation 

quaternions (Proença & Gao 2019). By creating a 3D model 

of an artificial spacecraft called Tango, 11 vertices of the outer 

skeleton were designated as landmarks. The 2D landmark 

coordinates on the image were then estimated using a high-

resolution network (HRNet) deep-learning model, and the 

relative pose was estimated using nonlinear least squares 

(NLS; Chen et al. 2019). Phisannupawong et al. (2020) 

employed the GoogLet model to estimate 6DOF from the 

URSO dataset (Phisannupawong et al. 2020). Garcia et al. 

used spacecraft pose estimation dataset (SPEED) as their 

dataset. They estimated the bounding box of a spacecraft by 

using LSPNet (Garcia et al. 2021). Choi et al. manufactured 

a tong-shaped docking port for docking experiments. 

Consequently, they developed a deep learning model 

using images of the docking port set in various external 

environments. The relative position was predicted and the 

model was applied to an actual docking experiment (Choi et 

al. 2021).

In a preliminary study, synthetic images were used for 

both training and testing of a deep learning model. certain 

studies have applied deep-learning models trained with 

synthetic images to several real image samples. In addition, 

to perform a hardware experiment that identified poses in 

real time, a deep learning model was trained using similar 

real images. Owing to the difficulty of obtaining sufficient 

real data for learning in an actual space environment, this 

study trained a deep learning model using only synthetic 

images. We confirmed that the applicability of the model 

to actual images by performing hardware experiments 

in a laboratory. Further, a virtual space environment was 

constructed to generate synthetic images of a spacecraft. 

Vertices representing the geometric features of the satellite 

were defined as landmarks, and the 2D coordinates of 

these landmarks were recorded for each image. The images 

and each landmark coordinate were entered into the deep 

learning model for training to find landmark coordinates 

from the images. Subsequently, the trained deep learning 

model was applied to a real image captured using an 

actual camera in a hardware experiment. Finally, the pose 

was calculated using the least-squares method from the 

estimated 2D landmark coordinates. In addition, this study 

demonstrated that a deep learning model trained using 

only synthetic images can be sufficiently applied to real 

images. To prove this, we compared the actual hardware 

experimental results in a laboratory with a software 

simulation with the same relative distance.

2. METHODS

2.1 Architecture

In this study, we established a real-time pose estimation 

system for docking to confirm its accuracy and calculation 

time. First, we created a virtual environment and generated 

synthetic spacecraft images. The images were input into 

the deep learning model for training to determine the key 

points. The trained deep learning model was then applied to 

real images captured by an actual camera. Finally, the pose 

was calculated based on the estimated key point coordinates 

using triangulation and the least-squares method. As 

shown in Fig. 1, the first step involved building a virtual 

environment that simulated a laboratory using UE4, a 3D 

game simulation program. For the hardware experiments on 

the ground, we substituted the spacecraft with a simulator. 

The program generated images and recorded the position 

and attitude of the simulator (spacecraft) and camera. As 

indicated by the arrow in Fig. 1, the image generated in 

the first stage was transferred to the third stage of the deep 

learning model, and the location and attitude data for each 

image were transferred to the second stage. In addition, to 

test the algorithm, we produced real images by capturing 

photographs of the simulator in a laboratory. 

In the second step, the 2D landmarks (keypoints) on 

the image were calculated based on the position and 

attitude values of the camera and simulator using camera 

perspective projection. Subsequently, the coordinate data 

were transferred to the third step, wherein the deep learning 

model was trained to use an image as an input value and 

produce landmark coordinates as output values. In the 



63 https://janss.kr 

Shinhye Moon et al.  Spacecraft Pose Estimation Algorithm using Deep Learning

third step, 90% of the synthetic images were used as training 

data and the remaining 10% were used as verification data 

to check for normality. Real images from the hardware 

experiment were input into the trained model, which then 

estimated the landmark coordinates. Finally, in the fourth 

step, the pose was predicted using the weighted nonlinear 

least-squares method from the landmark coordinate output 

from the third step.

2.2 Virtual Environment Building and Synthetic Image 
Generation

2.2.1 Virtual Environment Building using Unreal Engine 4

In this study, to generate data for deep learning training, 

we randomly generated several photographs by creating 

a virtual environment similar to that of the laboratory and 

setting the desired pose of the simulator. Fig. 2 shows the 

laboratory environment for the hardware test. The hardware 

testbed system comprised an observation target simulator 

(autonomous spacecraft test environment for rendezvous 

in proximity, ASTERIX), a simulator (OBLIX) equipped with 

a camera, and a deep learning computer that estimated 

landmark coordinates and predicted poses from images. 

A standing light was placed on the right, and the others 

were blocked. Eight motion-capture cameras were attached 

to the ceiling around the test bed. ASTERIX, which has a 

structure with eight landmarks at the top, fixed its position. 

The OBELIX photographed ASTERIX with a camera and 

was moved via an external personnel in this study. We 

created a virtual simulation environment based on the 3D 

game engine program UE4. Lighting in our environment 

involved correct and directional light to simulate standlight 

and sunlight, respectively. The center of the test bed was 

set as the origin. We set the vertical axis of the table as the 

X axis, the horizontal axis as the Y axis, and the direction 

perpendicular to the work plane as the Z axis. The simulator 

OBELIX moved with a camera and captures pictures of the 

other simulator (ASTERIX) in real time to predict the pose. 

We inserted the ATERIX 3D model into the UE4 and fixed 

it at a specific position. OBELIX was simulated as a camera 

moving around ASTERIX and capturing pictures of it. The 

motion-capture results were used as reference values.

A landmark refers to key points that visually represent the 

structural characteristics of a target. We estimated the pose 

between the camera and target from the 2D arrangement 

of the landmarks. At the top of the simulator model, 

vertices representing geometric features were defined as 

landmarks. Using a simulation program, we created an 

environment similar to that in an actual laboratory and 

Fig. 1. Illustration of overall methodology. The boxes on the left are steps of generating data. The others are the processing data to predict the pose. UE4, unreal 
engine 4.
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generated a realistic synthetic simulator. Eight points were 

selected as landmarks, as shown in Fig. 3. These landmarks 

simply represent the geometric characteristics (vertices) of 

ASTERIX observed from the camera height.

To generate 5,000 synthetic images, the camera orientation 

was randomized and randomly placed within the target 

viewing and operating range of [50 160] cm. This distance 

range was determined based on the limitations of movement 

in the laboratory. Fig. 4 shows the output image samples.

In contrast to synthetic images, the application of real 

images to a deep learning model is challenging because of 

black and white noise and large contrast of light. Therefore, 

before inserting the synthetic images into the deep learning 

model for training, we added black and white noise to the 

images using Matrix Laboratory (MATLAB) and modified 

their brightness.

2.3 Pointing 2D Landmarks on the Images

Before training the deep learning model, we considered 

the 2D landmarks on the synthetic images. The coordinates 

of the landmark were calculated based on the camera 

perspective projection from the pose value for each 

generated image. The position of the 2D landmark in the 

image was calculated considering coordinate system 

transformation and camera perspective projection, as 

shown in Fig. 5. The origin was moved to the center of the 

camera. In addition, we define the rotational transformation 

of the camera coordinate system to the world coordinate 

system. The camera gaze direction was defined as the 

X-axis, the horizontal direction of the captured image was 

defined as the Y-axis, and the vertical downward direction 

was defined as the Z-axis. The coordinates of the landmark 

in the 2D image were then calculated using the focal length 

f of the camera.

The coordinates of the landmarks are converted from the 

world system using the translation transformation matrix 

Ci(i = 1,2,3) and rotation matrix rij(i,j = 1,2,3) from world system. [U 

V W] represent the three-dimension position coordinates of 

the landmarks in the world coordinate system and [X Y Z] 

Fig. 2. Real laboratory vs virtual environment. The virtual environment is created like the real laboratory.

Fig. 3. Simulator (ASTERIX) and designated 8 landmark locations on the top of ASTERIX.
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are the position of the three-dimensional landmarks in the 

camera coordinate system.
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where fy,z is the focal length and is the distance from the lens 

to the charge-coupled device (CCD) wherein the image is 

formed; however, in this study, the distance from the point 

was converted into pixels. Further, the gaze direction in the 

camera coordinate system was the X-axis, and the Y- and 

Z-axes represent the horizontal and reverse vertical directions 

of the image, respectively. The y’ and z’ obtained through 

camera parameter matrix conversion are divided by x’. 
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Fig. 4. Example of synthetic images generated by unreal engine 4 (UE 4).

Fig. 5. From world to camera coordinate transformation and camera perspective projection.
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2.4 Landmark Coordinates Estimation

2.4.1 Dataset and Deep Learning Model (High-Resolution Network)

In this study, 4,500 data points (i.e., 90% of the 5,000 data 

points) were used as training data, and 500 (i.e., 10%) were 

used as verification data to confirm normal training. Deep 

learning is a field of machine learning that simulates human 

thinking. It is an artificial neural network algorithm that 

comprises several stages of inner layers between the input 

and output data. In this study, we used a HRNet, which was 

optimized to find the coordinates of keypoints on the image. 

HRNet has two versions: W32 and W48. We used the W32 

version to reduce the processing time because the results 

of the two models are similar, and W48 is a more complex 

model (Sun et al. 2019).

In Fig. 6, the training and validation data are synthetic 

images generated by the UE4. The test data were real 

images captured by a camera in the hardware test for 

algorithm evaluation. In our DL model, the image is the 

input value and landmark coordinate values are the output 

values. Fig. 6 shows the data flow and overall structure of 

HRNet. The third process is illustrated in Fig. 1. The high-

resolution subsystem began with the first step. In addition, 

subnetworks that facilitate conversion from high to low 

resolution were gradually added to create more steps and 

connect multiple-resolution subnetworks in parallel (Sun 

et al. 2019). The algorithm predicted the pose from these 

landmark coordinates using the weighted nonlinear least-

squares method.

The data used in training comprised images, landmark 

coordinates, and whether the coordinates were observed 

(visible). For the landmark coordinates, the X-axis was in 

the range of 0–720, and the Y-axis was in the range of 0–540. 

Visibility was 1 if the landmark was in the image and 0 if it was 

outside the image. The images were PNG files of a grayscale 

image. The input image size was 720 × 540 pixels, and the 

output size was 256 × 196 pixels. The batch size, which is the 

number of data points to be trained at once, was set to eight 

considering the performance of the computer. The model was 

trained 50 times and the training rate was set to 0.001. Adam 

was used as the optimizer (Kingma & Ba 2015).

2.5 Pose Prediction

 The pose was calculated from the landmark coordinates 

by reflecting the observation accuracy of the estimated 

coordinate values. The landmarks in 2D had a fixed 

relative position and arrangement relationship with each 

number in 3D. Therefore, the pose can be estimated from 

the coordinates of the landmarks in 2D. We used the 

weighted nonlinear least-squares method to estimate the 

pose between the camera and the simulator based on the 

observed data. This nonlinear optimization problem can 

be solved using various tools, such as the Gauss–Newton 

method, Newton–Raphson method, and gradient descent. 

Fig. 6. Overview of image data organization and high-resolution network (HRNet) structure.
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We used the Levenberg–Marquardt method, the most 

widely used method in this study.

1kp +



 denotes the relative position/rotation matrix of the 

(k + 1)-th observation value. The matrix kp  is defined by 

summing the rotational matrix rij(i,j = 1,2,3) representing the 

relative attitude, and vector ( )1,2,3i it
=
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The deep learning model HRNet also represents the 

confidence of the resulting coordinates, with a value 

ranging as 0–1 when outputting the result (Sun et al. 2019). 

In general, the weight is the reciprocal of the observation 

variance. In this study, we define these weights as the 

reliability of deep learning estimation.
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3. RESULTS

3.1 Software Simulations

Software simulations were conducted to verify the pose 

estimation algorithm based on deep learning and to 

determine the causes of errors. In the software simulations, 

500 verification images generated by UE4 were used as test 

images. Therefore, the exact position and orientation 

information of the camera and simulator were known for 

each image, and the true values of the 2D landmark 

coordinates in the image were recorded. These true 

landmark coordinate values were later used as the actual 

values. The errors in the landmark coordinates can be 

obtained through comparisons of the estimated and actual 

values. The vector size of the difference (Ep) between the 

estimated coordinates value (
esX


) and the actual coordinate 

value (
trueX


) is defined as a landmark error: p es trueE X X= −
 

. 

The average landmark estimation error of the 500 validation 

data points was 7.3918 pixels for an image size of 720 × 540 

pixels.

The pose was calculated using the weighted nonlinear 

least-squares method from the estimated landmark 

coordinates. Position and orientation errors were defined to 

calculate the accuracy of the results. The relative position 

error (ET) was calculated using the vector size of the 

difference between the actual and estimated positions: 

T true estE t t= −
  . The relative orientation error (ER) is defined 

as Hamiltonian product of the actual orientation quaternion 

(qtrue) and the estimated orientation quaternion (qest): 

( )12 T
R est trueE cos q q−= ⋅  (Kisantal et al. 2020). During the 

generation of synthetic data, the relative distance between 

the camera and the simulator was designated in the range of 

approximately 50–160 cm considering the actual laboratory 

environment. The average relative position error was 3.26 

cm and the average orientation error was 14.14°. Fig. 7 

shows the results of the software simulation using the 

verification image as sample data. The blue dots represent 

the actual landmarks, and the red dots represent the 

landmarks estimated by deep learning. In addition, the 

green dots represent the final landmarks predicted using the 

weighted nonlinear least-squares method.

3.2 Software Simulation Analysis: Distance, Rotation, and 
Landmark Error

We analyzed the error trend of 500 verification data points 

according to the relative distance between the camera and 

the simulator. In Fig. 8, the X-axis represents the distance 

from the center of the simulator to the camera. In the upper 

graph, the Y axis represents the distance error, which is 

the difference between the estimated and actual positions. 

Whereas, the Y axis in the lower graph represents the 

orientation error. The red line is a second-order polynomial 

parabolic graph indicating the tendency of the overall error. 

Consequently, when the distance between the camera and 

the simulator increased, the pose error increased.

We also analyzed the error trend according to the relative 

rotation between the camera and simulator. In Fig. 9, the 

X-axis represents the relative rotation between the camera 

and the simulator. In the upper graph, the Y-axis represents 

the distance error and that in the lower graph represents 

the orientation error. The red parabolic line is a second-

order polynomial parabolic graph exhibiting the tendency 

of the overall error. Overall, even when with increased in the 

relative rotation, the pose error did not change significantly. 

We also analyzed the variation of the pose error according 

to the landmark coordinate estimation error. The coordinate 
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estimation error was expressed as pixels. In Fig. 10, the 

X-axis represents the average values of the eight landmark 

errors estimated by deep learning. The Y-axis of the upper 

and lower graphs represent the position and orientation 

errors, respectively. The red parabolic line is a second-order 

polynomial parabolic graph exhibiting the tendency of the 

overall error. Because the relative position estimation Was 

less affected by landmark errors, the position error yielded a 

Fig. 7. Actual landmarks (blue), estimated landmarks (red) and predicted final pose (green) on examples of synthetic image.

Fig. 8. Software simulation analysis: position error (top) and orientation error 
(bottom) according to relative distance.

Fig. 9. Software simulation analysis: position error (top) and orientation error 
(bottom) according to relative rotation.
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constant value regardless of the landmark estimation error. 

The orientation error tended to increase with the landmark 

estimation error. The orientation was determined using a 2D 

landmark arrangement. Therefore, even in case of a slight shift 

in the 2D landmark’s coordinate location, the error increased.

3.3 Hardware Simulations

We estimated the pose between the camera and 

simulator using hardware experiments. In the experiment, 

a camera-mounted simulator approached the observation 

target, and external personnel performed the movements 

of the simulator. The total experiment time was 50 s, and 

the landmarks were estimated by capturing pictures every 

second (51 photos in total). The pose between the camera 

and simulator was predicted from the estimated landmark 

coordinates and compared with the reference data 

obtained from motion capture. The results of the software 

simulation were compared with those of the hardware test. 

Subsequently, using a deep learning model trained with 

various noises, we analyzed how the pose estimation results 

varied depending on the noise in the learning image.

3.3.1 Configuration of Hardware Test Bed: Computer, Camera, 
and Data Networks

The simulator used linear air bearings to perform 

translational motion on a table with minimal friction. 

In addition, through adjustments of the balance of the 

attached mass units, the center of gravity and rotation were 

matched to ignore the gravitational torque. A three-degree 

friction-free rotation motion was performed using spherical 

air bearings. Consequently, the satellite simulator can 

simulate frictional 5-DOF motion (Eun et al. 2018).

We set the DL computer specifications such that the DL 

model could perform smoothly. Moon (2022) described the 

main hardware configuration (Moon 2022). The internal 

parameter matrix of the camera was measured using the 

GML C++ Camera Calibration Toolbox v0.72, developed by 

the National University of Moscow Graphics and Media Lab 

(Zhang 2000). 

Transmission and reception are based on socket 

communication and network folder sharing. In this study, 

while executing a deep learning program on a deep learning 

computer, a command was sent to the simulator computer 

to record via the camera every second. Upon receiving 

this command, the simulator computer (OBLIX) sent a 

photography command to the camera and stores the image 

in a network-sharing folder with the deep learning computer, 

which estimates landmark coordinates by inputting the 

stored image into the model and predicts the pose using 

the weighted NLS method. The calculated pose data are 

transmitted and stored on a simulator computer through 

socket communication. Fig. 11 illustrates this process. 

We used motion capture data as the reference data 

(actual data). The motion capture is called Primex-13. It was 

manufactured at OptiTrack in San Francisco, CA, USA. It 

tracks passive and active with positional error less than ± 
0.20 mm and rotational errors less than 0.5°. Eight sensing 

cameras were installed on the ceiling around the laboratory 

testbed and location-detection sensors were attached to the 

simulator. Any motion captured the observed locations of 

the sensors in real time. Consequently, the motion capture 

program converts the location of the sensors into a pose 

between the camera and the fixed simulator (ASTERIX). 

3.3.2 Hardware Test Results Analysis 

The simulator with the camera was arbitrarily moved, 

whereas the other was photographed. Consequently, the 

Fig. 10. Software simulation analysis: position error (top) and orientation 
error (bottom) according to the landmark coordinate estimation error by 
deep learning.

Fig. 11. Configuration of data transmission and reception.
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pose between the camera and simulator was calculated and 

recorded in real time. Fig. 12 shows the landmarks estimated 

using deep learning (blue dots). Total of 51 images were 

captured.

The predicted poses were compared with the actual 

values, and the results are listed (Table 1). For 51 test data 

points, the average value of position errors excluding the 

results of the motion capture using deep learning was [–11.92 

mm 1.94 mm 1.22 mm] for the X-, Y-, and Z-axis directions, 

respectively. The variance of the position error (absolute 

value) was [16.85 mm 7.17 mm 9.75 mm]. The X-axis is 

estimated to be biased and approximately 11.92 mm smaller 

on average than the true value. Whereas, Y- and Z-axis errors 

were estimated to be 1.94a 1.22 mm larger, respectively. 

Therefore, the Y- and Z-axis errors perpendicular to the gaze 

direction were not largely biased toward one side. However, 

the X-axis, which is the gaze direction, was deflected less 

than the actual value. It was confirmed that the X-axis error 

in the gaze direction had the largest absolute value, whereas 

the Y- and Z-axis error values were relatively small. The 

orientation errors on the X-, Y-axis-, and Z-axes were 0.6526°, 

2.9342°, and 6.3758°, respectively. In addition, the average 

vector size of the position error was 23.84 mm and the 

posture error was 7.47°.

3.3.3 Requirements for Accuracy of Hardware Experiments for 
Docking 

When analyzing the structure of the two simulators and 

docking ports, as shown in Fig. 13, the horizontal distance ( a ) 
among the requirements for docking is 605.0 mm and the 

orientation accuracy requirement (θ) is 2.1° from the camera. 

In addition, the rotational accuracy requirement of the target 

simulator (∅) was 5.4°. The absolute orientation error in the 

hardware experiment when approaching within 605.0 mm was 

2.44°. The orientation error results slightly exceeded the 

docking requirements. The image on the right side of Fig. 13 

shows the movement path of the simulator during the 

hardware experiments. ASTERIX was photographed with 

landmarks. The OBELIX was moved using an external force. 

The red point is the starting point of the movement, and the X 

mark indicates the end point of the movement. Fig. 14 shows 

Fig. 12. Real image samples taken by the hardware experiment shows landmarks (blue) estimated by deep learning.

Table 1. Hardware test results: position and orientation error

X-axis Y-axis Z-axis

Position error by axis –11.92 mm 1.94 mm 1.22 mm

Position error variance by axis 16.85 mm 7.17 mm 9.75 mm

Position error average 23.84 mm

Orientation error by axis 0.6526° 2.9342° 6.3758°

Orientation error average 7.47°
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the position and orientation errors according to the relative 

distance and draws a trend line. As the relative distance 

increased, both the position and orientation errors tended to 

increase. Fig. 15 compares the X-, Y-, and Z-axis position 

prediction results with the actual values and shows the 

orientation error. Fig. 16 shows the graph obtained by 

subtracting the actual value from the predicted value of the 

relative position vector. For the relative position prediction 

results, the overall tendency was consistent even when the 

distance changed. In the case of the X-axis, when it was far, the 

predicted value was somewhat larger or smaller than the actual 

value; however, when it was approximately 70 cm, the 

predicted value continued to be smaller than the actual value. 

In the case of the Y-axis, the error was somewhat large when 

the X- and Y-axis distances were long but did not converges 

close to the actual value when they were close. In the case of 

the Z-axis error, the error value increased when the distance 

was long and converged to the actual value when it is close. 

In Fig. 15, the orientation error decreased as the distance 

decreased. When the distance was small, the resolution 

increases accordingly. In addition, the overall result 

tended to be unstable because it was sensitive to landmark 

coordinate errors in the image. 

Table 2 summarizes the time spent on the calculation and 

communication processes of the hardware experiments. 

The average time required to estimate the landmarks of an 

image using deep learning was 0.2471 s. The average time 

required to transfer the estimated landmark to MATLAB, 

predict the pose, transfer the predicted result value to 

the simulator computer, and store it was 0.0184 s. The 

average total time spent on deep learning operation, data 

transmission, and pose prediction was 0.2656 s. The time 

required for deep learning operations accounted for 93% of 

the total processing time.

3.4 Comparing Software Simulation and Hardware Test

Table 3 presents the results of the comparison between 

the software simulation and hardware tests. To accurately 

compare the results, 51 synthetic images with the same 

relative distance as in the hardware experiment were 

created, and the image noise variance was 0.01. For the 

distance errors, the software simulation was 17.61 mm, and 

the hardware test was 23.84 mm. The orientation errors are 

6.89° and 7.47°, respectively. For the software simulation, the 

distance error were 73.87% and 92.24% of the hardware test. 

The X-, Y-, and Z-axis position errors of software simulation 

was [13.35 mm 3.21 mm 8.83 mm] and the hardware 

experiment result was [16.85 mm 7.17 mm 9.75 mm]. The 

order of the size of the errors was the X, Z, and Y-axis. For 

Fig. 13. Simulator requirement diagram for docking (left), simulator movement path in the hardware experiment (right).

Fig. 14. Analysis of distance (top) and orientation (bottom) tendency 
according to relative distance.
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the X-, Y--, and Z-axes, the orientation errors of the software 

simulation were [0.5513° 3.4875° 5.4101°] and those of the 

hardware experiment were [0.6526° 2.9342° 6.3758°]. The 

error in the z-axis direction was the largest, and the order of 

the error sizes was the same for Y and x-axes.

The position error in the x-axis direction is the largest 

because it is the camera’s gaze direction; therefore, it 

is estimated by the size of the target (distance between 

landmarks) and not by direct distance information. In 

addition, the orientation error in the Z-axis direction was 

large, because the simulator with the camera rotated along 

the Z-axis and moved horizontally (Y-axis). Therefore, it 

is necessary to estimate the values of the two variables 

simultaneously to estimate the orientation along the Z-axis. 

In addition, the arrangement of the landmark numbers 

in Fig. 3 indicates that, when rotated on the Z-axis, there 

Fig. 15. Relative position estimation comparison results and orientation error graph: prediction (blue) and motion capture (red).
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appeared a situation wherein the landmarks 3, 4, 7, and 8 

were arranged approximately as a straight line. Therefore, 

the 2D landmarks of the corresponding number overlap, 

and the orientation prediction error of the Z-axis increased 

according to the landmark coordinate estimation error.

Comparison of the software simulation and hardware 

test results, indicated the former as being more accurate. 

This is because the training and test images were synthetic 

images generated in the same virtual environment and had 

the same noise. The real image from the hardware test had 

a relatively large estimation error, because the generation 

environment and noise values were different. However, 

the size tendency of the errors by axis was consistent and 

the overall average error size was similar. Therefore, a deep 

learning model trained using synthetic images generated 

in a virtual environment can be applied to real images. 

In addition, when a virtual environment, such as a real 

environment, is implemented and software simulation 

results are obtained, the actual hardware experimental 

results can be predicted from the results.

As a result of comparing the software simulation and 

hardware experiments in this study, the size and tendency 

of the pose-estimation errors were almost similar. Therefore, 

we predict that the results of actual experiments in real 

space will be similar to those of the software experiments 

conducted in this study.

3.5 Comparison of Experimental Results according to 
Image Noise

We used real images captured with a camera in a 

hardware experiment as test data. Therefore, estimating 

an accurate noise value was challenging because it varied 

depending on the camera settings and lighting environment. 

In addition, image analysis using deep learning is difficult 

owing to the increase in the noise in the image (Nazaré et al. 

2018). Therefore, we analyzed the hardware experimental 

results by adding different levels of noise to the training 

images. We input noise by dividing it into five stages, and 

compared the pose errors in each case. Consequently, the 

effects of image noise used for deep learning training were 

summarized and analyzed.

Image noise refers to a phenomenon such as noise in 

the background within a signal obtained from an image 

Fig. 16. Hardware experiment results: relative position error.

Table 2. Time spent processing and communication

Processing list Time (seconds)

Landmark estimation using deep learning 0.2471

Data transmission/reception and pose prediction 0.0184

The total process 0.2656

Table 3. Software simulation vs hardware test

Software simulation Hardware test

Number of images 51 51

XYZ-axis position error [13.35  3.21  8.83] mm [16.85  7.17  9.75] mm

Distance error 17.61 mm 23.84 mm

XYZ-axis rotation error [0.5513  3.4875  5.4101]° [0.6526  2.9342  6.3758]°

Angular error 6.89° 7.47°
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captured by a camera. The noise values were expressed 

as mean and variance, and we set only the case where the 

average was 0. In this study, as gray images were used, zero 

implied that gray noise was added to the picture; however, 

the overall brightness did not change. Variance implies the 

magnitude of gray noise, thus when the variance was 0, 

there was no noise. As the noise increased, the magnitude 

of the noise increased. The noise of the training image 

was divided into five stages and applied to the hardware 

experiment.

We input gray noise into the image using a MATLAB 

function. The average gray noise was fixed at 0, and the 

variance values were set to 0, 0.001, 0.01, 0.1, and 1. It was 

confirmed that the higher the noise variance value, the 

lower the image quality. Five deep learning models were 

individually trained using these images. In addition, 150 

real images generated by additional hardware experiments 

were input into the deep learning model to estimate the 

landmark. Consequently, the pose error between the 

camera and simulator was calculated using a weighted NLS 

method. Finally, the tendency of the error according to the 

gray noise variance of the training image was analyzed.

Table 4 lists the average position and attitude errors of 

the 150 real images according to the noise of the training 

images. In the absence of noise (variance 0), and when 

the noise was large (variance 1), both the position and 

orientation errors were relatively large. The position error 

was the smallest when the noise variance was 0.001. In 

addition, the orientation error was smallest when the noise 

variance was 0.1. When the noise variance was 0.1 or less, 

the estimation errors were similar. Therefore, to apply the 

deep learning model to a real image, noise less than 0.1 

must be added to the synthetic image for training.

4. SPACE ENVIRONMENT SIMULATION

The final goal of this study was to automatically dock 

rendezvous and remove space debris using visual data. Thus, 

the pose of the target must be predicted accurately, even 

in the absence of a visual sensor or pattern on it. Therefore, 

deep learning, which does not require a specific sensor and 

can be used with various backgrounds, was employed for 

visual data analysis. Because obtaining many real images 

captured in space is difficult, Thus, we implemented a 

virtual environment that simulated a laboratory and flight 

test bed. We then trained a deep learning model using the 

generated synthetic images. In addition, it was verified that 

the deep learning model trained with only synthetic images 

could be applied to a real image through comparisons of the 

results of the software simulation and hardware test.

4.1 Spacecraft Model and Virtual Environment for Generating 
Data

The satellite model used was Pumbaa, a 2U-sized satellite 

from the CANYVAL-C mission (Kim et al. 2019). As shown 

in the left image in Fig. 17, the 3D coordinates of the 16 

vertices representing the geometric characteristics of the 

spacecraft were recorded by setting the geometric center 

of the spacecraft as the origin. In addition, numbers 1–16 

were assigned to each landmark. Landmarks 1–8 in Fig. 

17 represent the vertices of the spacecraft solar panel, and 

landmarks 9–16 correspond to the vertices of the satellite’s 

rectangular parallelepiped body. In addition, the landmarks 

and shapes of the satellite were displayed using MATLAB, as 

shown in the right image of Fig. 17.

The spacecraft’s 3D CAD model was inserted into UE4. 

Because the existing model had the same color on the 

four sides of the solar panel and body, we eliminated 

symmetry by painting the sides of the solar panel and body 

in different colors. We assumed that a camera was attached 

to another spacecraft and considered this as an observation 

spacecraft, or simply a camera. We also constructed the 

Earth model and lighting environment to generate images 

of the spacecraft orbiting the Earth’s low orbit (Unreal 

Engine, 2020). It was assumed that the spacecraft orbited 

at an altitude of 780 km. The lighting conditions were set to 

20 lx in the simulation, assuming that the actual solar light 

on Earth was 120,000 lx and that the shutter speed of the 

camera was 1/6,000 s. In addition, the light reflected from 

the Earth was set to 6 lx, considering the Earth’s albedo.

Herein, 4,000 images were created by setting each image 

to have random positions and rotations within the range, 

and the location and rotation of each image were recorded. 

The position and gaze direction of the camera were fixed 

along the direction of the Earth’s center. The relative 

distance between the camera and the satellite was 1–10 m 

along the direction of the camera’s gaze, and 0.3–3 m along 

the vertical direction of the camera’s gaze. This ensured that 

the entire image of the satellite could be observed in the 

Table 4. Hardware test results according to noise variance of training 
data

Noise variance Position error (mm) Orientation error (°)

0 70.27 19.38

0.001 31.94 11.54

0.01 33.98 12.27

0.1 36.98 9.68

1 402.81 43.58
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background of the Earth. In addition, the satellite’s rotation 

was set to have a random value within ± 80° based on the 

absolute coordinate axis for each axis, and the its rotation 

quaternion was recorded for each image. The size of the 

image captured by the camera was set to 1,280 × 960 pixels, 

the viewing angle was 90°, and the focal length was set to 

640 mm. Fig. 18. shows the image sample generated in this 

manner. Earth, which was the background, was made to 

show random sides for each image.

4.2 Deep Learning Model Training and Pose Prediction 

HRNet was used as the deep learning model. The size of 

the image was reduced to 256 × 192, and the model 

parameters were set to be the same, except for the color 

image. Of the total 4,000 data points, 3,600 (90%) were used 

as data for training the deep learning model. The remaining 

400 (10%) were used as test data to estimate the 2D 

landmark coordinates and predict the pose of the target 

satellite. The pose was calculated from the landmark 

coordinates using the nonlinear least-squares method. The 

position error Was also calculated as a ratio (ET), which is 

the difference between the actual distance and the 

prediction divided by the actual distance: 2

2
TE −=

*

*

t t
t . By 

calculating the poses of 400 verification data points, the 

distance error (ET) was 0.044 m, position ratio ( TE ) was 
obtained as 0.86%, and orientation error (ER) was 11.11°. Fig. 

19 shows the final estimated landmark coordinates on the 

Fig. 17. 3D CAD model of spacecraft (left), and 3D landmark coordinate in MATLAB (right). MATLAB, MATrix LABoratory.

Fig. 18. Spacecraft image samples with the Earth’s background generated by unreal engine 4 
(UE4).
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cropped spacecraft images (green lines). 

4.3 Analysis of the Results of Spacecraft Software Simulation

For the 400 verification data points, we drew a graph to 

analyze the pose error according to the relative distance 

between the observation and target spacecraft. The 

average and standard deviations of the pose errors were 

calculated based on the relative distance. The mean and 

standard deviation were calculated using 100 data each 

in 1 m units for 3–10 m. For the data used in the result 

analysis, the relative distance was fixed at 1 m, and the 

orientation was randomly set. A total of 100 new test data 

points were generated at 1 m intervals, landmarks were 

estimated using the trained deep learning model, and the 

pose was predicted. Fig. 20 shows the mean and standard 

deviation (3σ) for each relative distance. The graph on the 

left shows the relationship between the relative distance 

and the distance error. The error increased rapidly from 

a relative distance of 6 m. The graph on the right shows 

the relationship between the relative distance and the 

orientation error. The orientation error rapidly increases 

from a relative distance of 5 m.

When comparing the software simulations and hardware 

experiments conducted in this study, the errors were similar. 

Therefore, the error tendency can be predicted based on 

the relative distance when using a 2U-sized spacecraft. In 

addition, we propose that the distance limit condition for 

Fig. 19. Four cropped spacecraft image samples of different pose and background. Final 
landmarks are connected by green lines.

Fig. 20. Analysis of the relative distance (top) and orientation (bottom) error according to relative distance.
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obtaining stable results within relative distance error of 70 

mm and 20° posture error is approximately 4 m.

Table 5 presents a comparison of the results of our study 

with other spacecraft pose estimation results. Proença 

& Gao (2019) used deep learning model ResNet50 and 

simulated UE4 to generate synthetic images of 7.48 m-size 

spacecraft called Soyuz. The total number of images for 

training was 4,500. When the color image resolution was 320 

× 240, the distance error was 1.6 m and the orientation error 

was 24.9°. Sharma & D’Amico (2019) introduced spacecraft 

pose network (SPN) to estimate the pose and SPEED. They 

used a 1.30 m-size Tango as spacecraft model and trained 

the SPN with 12,000 gray images. For the resized 224 × 224 

pixels, the distance error was [0.055 0.046 0.78] m and the 

orientation error was 8.4254°. Considering the amount of 

training data and relative distance, our study produced 

good results for both distance and orientation errors. This 

is because the HRNet is an optimized model for identifying 

key points (Sun et al. 2019). In addition, Proença & Gao 

(2019) directly estimated the pose through deep learning. 

Sharma & D’Amico (2019) detected a 2D bounding box in an 

image around a target and estimated the relative distance 

from the diagonal length ratio. Therefore, estimating the 

coordinates of the 2D landmark using the least squares 

method is more accurate than the other methods.

5. CONCLUSIONS

This study developed an algorithm for estimating the 

relative position/rotation (pose) between a spacecraft and 

a camera from images. For actual space utilization, virtual 

images were created to build an estimation system, which 

was verified through hardware experiments. Image analysis 

using deep learning is applicable even when a specific 

sensor or pattern is not attached and the background is 

complex. To compare the software simulation and hardware 

experimental results, a virtual environment simulating 

a laboratory was implemented and artificial images of 

the observed objects with various relative positions and 

postures were generated. The relative pose of the object 

was predicted based on the nonlinear least-squares 

method using the estimated landmark coordinates. Further, 

hardware experiments were performed, and the algorithm 

was applied to actual images for comparison with software 

simulations under the same relative distance conditions. 

This study verified that a real-time relative pose estimation 

system could be constructed and applied to actual images 

using a deep learning model trained with virtual images. 

It was shown that the results of the hardware experiment 

could be predicted from the software simulation owing 

to the estimation error results of the software simulation 

and the hardware experiment being similar. Software 

simulations of spacecraft images orbiting the Earth were 

also conducted to predict actual estimation errors and 

propose a distance range to which algorithms could be 

applied. This work can contribute to pose identification 

during automatic rendezvous and docking experiments 

using a testbed.
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Table 5. Software simulation of spacecraft in the background of Earth: Comparison of results with other studies

Proença & Gao (2019) Sharma & D’Amico (2019) Ours

Satellite model Soyuz Tango Pumbaa

Deep learning model ResNet-50 SPN HRNet

Input image size 320 × 240 224 × 224 256 × 192

Color/Gray Color Gray Color

Number of training images 4,500 12,000 3,600

Satellite size 7.48 m 1.30 m 0.30 m

Distance range 10–40 m 3–50 m 1–10 m

Distance error 1.6 m [0.055  0.046  0.78] m 0.044 m

Orientation error 24.9° 8.4254° 11.1°

SPN, spacecraft pose network; HRNet, high-resolution network.
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