
61 https://janss.kr plSSN: 2093-5587 elSSN: 2093-1409

Research Paper
J. Astron. Space Sci. 41(2), 61-78 (2024)
https://doi.org/10.5140/JASS.2024.41.2.61

Copyright © The Korean Space Science Society

Design and Verification of Spacecraft Pose Estimation Algorithm using
Deep Learning

Shinhye Moon, Sang-Young Park†, Seunggwon Jeon, Dae-Eun Kang
Department of Astronomy, Yonsei University, Seoul 03722, Korea

This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-
squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication.
Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be
predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to
predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing
synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure
synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed.
Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the
same environment and relative distance. This study showed that a deep learning model trained using only synthetic images
can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic
docking and demonstrated that the method constructed with only synthetic data was applicable in space.

Keywords: spacecraft relative position and attitude, pose estimation, deep learning, landmark estimation, hardware experiment

1. INTRODUCTION

Predicting the 6 degree of freedom (6DOF) pose, that is,

the relative position and attitude, of a spacecraft in space

is a crucial aspect in the field of automatic rendezvous

docking and space waste removal. Docking with space

stations and spacecrafts facilitates the supply equipment,

fuel, and crew. In 2020, mission extension vehicle-1

(MEV-1) supplied fuel to Intelsat 901, which is located

in a geostationary orbit, to increase the lifespan of the

spacecraft (Mayfield 2021). Because this task must be

performed automatically, research on identifying the pose

of a spacecraft using visual sensors without a human-in-

the-loop is crucial. A software algorithm was developed to

predict the pose of the target using light-emitting diodes

(LEDs) was developed. The algorithm accepted images

of targets, determined the center point of the LEDs, and

estimated the three-dimensional (3D) relative positions and

orientations from the two-dimensional (2D) coordinates of

the LEDs. Software simulations with different observational

errors and actual testbed experiments were conducted

to determine their applicability in real environments

(Hyun et al. 2018). Vision-based active sensors, such as

light detection and ranging (LIDAR), are used for the pose

determination of uncooperative targets (Opromolla et al.

2015). However, these pose-estimation approaches require

special sensors to be attached to the spacecraft. In contrast,

deep learning can be used for pose estimation to dock with

a noncooperative spacecraft using only a single camera.

However, training deep-learning methods in outer space is

expensive. Therefore, we constructed a virtual simulation

environment on the ground to generate synthetic images for

training a deep-learning model based on the unreal engine

4 (UE4) (Sanders 2016).

This is an Open Access article distributed under the terms of the
Creative Commons Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted
non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Received 03 MAY 2024 Revised 18 MAY 2024 Accepted 22 MAY 2024
†Corresponding Author

Tel: +82-2-2123-5687, E-mail: spark624@yonsei.ac.kr

ORCID: https://orcid.org/0000-0002-1962-4038

62https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

The Kelvin’s Pose Estimation Challenge (KPEC) was held at

ESA’s Advanced Concepts Team (ACT) (Kisantal et al. 2020).

Estimating the pose of a spacecraft for given synthetic/real

images using deep learning is a challenging task. The KPEC

winners used two main methods. The first method directly

estimated the relative pose (three-dimensional position

vector and relative orientation quaternion) of the spacecraft

from the image using deep learning. The second method

modeled the spacecraft and determined 2D landmark

(key point) coordinates on images using deep learning.

They estimated the pose of the spacecraft by associating

the landmarks with the corresponding 3D positions in the

spacecraft model. Proença & Gao implemented a virtual

simulation environment to generate synthetic images. unreal

rendered spacecrafts on-orbit datasets (URSO) was built to

generate photos of spacecraft orbiting the Earth and was

used for deep learning training. URSO is based on a visual

simulation program called the UE4. The generated images

were directly used in the ResNet model, a deep learning

model, to predict the relative position vectors and orientation

quaternions (Proença & Gao 2019). By creating a 3D model

of an artificial spacecraft called Tango, 11 vertices of the outer

skeleton were designated as landmarks. The 2D landmark

coordinates on the image were then estimated using a high-

resolution network (HRNet) deep-learning model, and the

relative pose was estimated using nonlinear least squares

(NLS; Chen et al. 2019). Phisannupawong et al. (2020)

employed the GoogLet model to estimate 6DOF from the

URSO dataset (Phisannupawong et al. 2020). Garcia et al.

used spacecraft pose estimation dataset (SPEED) as their

dataset. They estimated the bounding box of a spacecraft by

using LSPNet (Garcia et al. 2021). Choi et al. manufactured

a tong-shaped docking port for docking experiments.

Consequently, they developed a deep learning model

using images of the docking port set in various external

environments. The relative position was predicted and the

model was applied to an actual docking experiment (Choi et

al. 2021).

In a preliminary study, synthetic images were used for

both training and testing of a deep learning model. certain

studies have applied deep-learning models trained with

synthetic images to several real image samples. In addition,

to perform a hardware experiment that identified poses in

real time, a deep learning model was trained using similar

real images. Owing to the difficulty of obtaining sufficient

real data for learning in an actual space environment, this

study trained a deep learning model using only synthetic

images. We confirmed that the applicability of the model

to actual images by performing hardware experiments

in a laboratory. Further, a virtual space environment was

constructed to generate synthetic images of a spacecraft.

Vertices representing the geometric features of the satellite

were defined as landmarks, and the 2D coordinates of

these landmarks were recorded for each image. The images

and each landmark coordinate were entered into the deep

learning model for training to find landmark coordinates

from the images. Subsequently, the trained deep learning

model was applied to a real image captured using an

actual camera in a hardware experiment. Finally, the pose

was calculated using the least-squares method from the

estimated 2D landmark coordinates. In addition, this study

demonstrated that a deep learning model trained using

only synthetic images can be sufficiently applied to real

images. To prove this, we compared the actual hardware

experimental results in a laboratory with a software

simulation with the same relative distance.

2. METHODS

2.1 Architecture

In this study, we established a real-time pose estimation

system for docking to confirm its accuracy and calculation

time. First, we created a virtual environment and generated

synthetic spacecraft images. The images were input into

the deep learning model for training to determine the key

points. The trained deep learning model was then applied to

real images captured by an actual camera. Finally, the pose

was calculated based on the estimated key point coordinates

using triangulation and the least-squares method. As

shown in Fig. 1, the first step involved building a virtual

environment that simulated a laboratory using UE4, a 3D

game simulation program. For the hardware experiments on

the ground, we substituted the spacecraft with a simulator.

The program generated images and recorded the position

and attitude of the simulator (spacecraft) and camera. As

indicated by the arrow in Fig. 1, the image generated in

the first stage was transferred to the third stage of the deep

learning model, and the location and attitude data for each

image were transferred to the second stage. In addition, to

test the algorithm, we produced real images by capturing

photographs of the simulator in a laboratory.

In the second step, the 2D landmarks (keypoints) on

the image were calculated based on the position and

attitude values of the camera and simulator using camera

perspective projection. Subsequently, the coordinate data

were transferred to the third step, wherein the deep learning

model was trained to use an image as an input value and

produce landmark coordinates as output values. In the

63 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

third step, 90% of the synthetic images were used as training

data and the remaining 10% were used as verification data

to check for normality. Real images from the hardware

experiment were input into the trained model, which then

estimated the landmark coordinates. Finally, in the fourth

step, the pose was predicted using the weighted nonlinear

least-squares method from the landmark coordinate output

from the third step.

2.2 Virtual Environment Building and Synthetic Image
Generation

2.2.1 Virtual Environment Building using Unreal Engine 4

In this study, to generate data for deep learning training,

we randomly generated several photographs by creating

a virtual environment similar to that of the laboratory and

setting the desired pose of the simulator. Fig. 2 shows the

laboratory environment for the hardware test. The hardware

testbed system comprised an observation target simulator

(autonomous spacecraft test environment for rendezvous

in proximity, ASTERIX), a simulator (OBLIX) equipped with

a camera, and a deep learning computer that estimated

landmark coordinates and predicted poses from images.

A standing light was placed on the right, and the others

were blocked. Eight motion-capture cameras were attached

to the ceiling around the test bed. ASTERIX, which has a

structure with eight landmarks at the top, fixed its position.

The OBELIX photographed ASTERIX with a camera and

was moved via an external personnel in this study. We

created a virtual simulation environment based on the 3D

game engine program UE4. Lighting in our environment

involved correct and directional light to simulate standlight

and sunlight, respectively. The center of the test bed was

set as the origin. We set the vertical axis of the table as the

X axis, the horizontal axis as the Y axis, and the direction

perpendicular to the work plane as the Z axis. The simulator

OBELIX moved with a camera and captures pictures of the

other simulator (ASTERIX) in real time to predict the pose.

We inserted the ATERIX 3D model into the UE4 and fixed

it at a specific position. OBELIX was simulated as a camera

moving around ASTERIX and capturing pictures of it. The

motion-capture results were used as reference values.

A landmark refers to key points that visually represent the

structural characteristics of a target. We estimated the pose

between the camera and target from the 2D arrangement

of the landmarks. At the top of the simulator model,

vertices representing geometric features were defined as

landmarks. Using a simulation program, we created an

environment similar to that in an actual laboratory and

Fig. 1. Illustration of overall methodology. The boxes on the left are steps of generating data. The others are the processing data to predict the pose. UE4, unreal
engine 4.

64https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

generated a realistic synthetic simulator. Eight points were

selected as landmarks, as shown in Fig. 3. These landmarks

simply represent the geometric characteristics (vertices) of

ASTERIX observed from the camera height.

To generate 5,000 synthetic images, the camera orientation

was randomized and randomly placed within the target

viewing and operating range of [50 160] cm. This distance

range was determined based on the limitations of movement

in the laboratory. Fig. 4 shows the output image samples.

In contrast to synthetic images, the application of real

images to a deep learning model is challenging because of

black and white noise and large contrast of light. Therefore,

before inserting the synthetic images into the deep learning

model for training, we added black and white noise to the

images using Matrix Laboratory (MATLAB) and modified

their brightness.

2.3 Pointing 2D Landmarks on the Images

Before training the deep learning model, we considered

the 2D landmarks on the synthetic images. The coordinates

of the landmark were calculated based on the camera

perspective projection from the pose value for each

generated image. The position of the 2D landmark in the

image was calculated considering coordinate system

transformation and camera perspective projection, as

shown in Fig. 5. The origin was moved to the center of the

camera. In addition, we define the rotational transformation

of the camera coordinate system to the world coordinate

system. The camera gaze direction was defined as the

X-axis, the horizontal direction of the captured image was

defined as the Y-axis, and the vertical downward direction

was defined as the Z-axis. The coordinates of the landmark

in the 2D image were then calculated using the focal length

f of the camera.

The coordinates of the landmarks are converted from the

world system using the translation transformation matrix

Ci(i = 1,2,3) and rotation matrix rij(i,j = 1,2,3) from world system. [U

V W] represent the three-dimension position coordinates of

the landmarks in the world coordinate system and [X Y Z]

Fig. 2. Real laboratory vs virtual environment. The virtual environment is created like the real laboratory.

Fig. 3. Simulator (ASTERIX) and designated 8 landmark locations on the top of ASTERIX.

65 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

are the position of the three-dimensional landmarks in the

camera coordinate system.

11 12 13

21 22 23

31 32 33

1 0 0 0 1 1

x

y

z

X r r r c U
Y r r r c V
Z r r r c W

−
 − =
 −

 (1)

where fy,z is the focal length and is the distance from the lens

to the charge-coupled device (CCD) wherein the image is

formed; however, in this study, the distance from the point

was converted into pixels. Further, the gaze direction in the

camera coordinate system was the X-axis, and the Y- and

Z-axes represent the horizontal and reverse vertical directions

of the image, respectively. The y’ and z’ obtained through

camera parameter matrix conversion are divided by x’.

1 0 0 0

0 0 0
0 0 0

1

y

z

X
x

Y
y f

Z
z f

 =

′

′
′

 (2)

Fig. 4. Example of synthetic images generated by unreal engine 4 (UE 4).

Fig. 5. From world to camera coordinate transformation and camera perspective projection.

66https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

yy
x

=
′
′

 zz
x

=
′
′

2.4 Landmark Coordinates Estimation

2.4.1 Dataset and Deep Learning Model (High-Resolution Network)

In this study, 4,500 data points (i.e., 90% of the 5,000 data

points) were used as training data, and 500 (i.e., 10%) were

used as verification data to confirm normal training. Deep

learning is a field of machine learning that simulates human

thinking. It is an artificial neural network algorithm that

comprises several stages of inner layers between the input

and output data. In this study, we used a HRNet, which was

optimized to find the coordinates of keypoints on the image.

HRNet has two versions: W32 and W48. We used the W32

version to reduce the processing time because the results

of the two models are similar, and W48 is a more complex

model (Sun et al. 2019).

In Fig. 6, the training and validation data are synthetic

images generated by the UE4. The test data were real

images captured by a camera in the hardware test for

algorithm evaluation. In our DL model, the image is the

input value and landmark coordinate values are the output

values. Fig. 6 shows the data flow and overall structure of

HRNet. The third process is illustrated in Fig. 1. The high-

resolution subsystem began with the first step. In addition,

subnetworks that facilitate conversion from high to low

resolution were gradually added to create more steps and

connect multiple-resolution subnetworks in parallel (Sun

et al. 2019). The algorithm predicted the pose from these

landmark coordinates using the weighted nonlinear least-

squares method.

The data used in training comprised images, landmark

coordinates, and whether the coordinates were observed

(visible). For the landmark coordinates, the X-axis was in

the range of 0–720, and the Y-axis was in the range of 0–540.

Visibility was 1 if the landmark was in the image and 0 if it was

outside the image. The images were PNG files of a grayscale

image. The input image size was 720 × 540 pixels, and the

output size was 256 × 196 pixels. The batch size, which is the

number of data points to be trained at once, was set to eight

considering the performance of the computer. The model was

trained 50 times and the training rate was set to 0.001. Adam

was used as the optimizer (Kingma & Ba 2015).

2.5 Pose Prediction

 The pose was calculated from the landmark coordinates

by reflecting the observation accuracy of the estimated

coordinate values. The landmarks in 2D had a fixed

relative position and arrangement relationship with each

number in 3D. Therefore, the pose can be estimated from

the coordinates of the landmarks in 2D. We used the

weighted nonlinear least-squares method to estimate the

pose between the camera and the simulator based on the

observed data. This nonlinear optimization problem can

be solved using various tools, such as the Gauss–Newton

method, Newton–Raphson method, and gradient descent.

Fig. 6. Overview of image data organization and high-resolution network (HRNet) structure.

67 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

We used the Levenberg–Marquardt method, the most

widely used method in this study.

1kp +

 denotes the relative position/rotation matrix of the

(k + 1)-th observation value. The matrix kp is defined by

summing the rotational matrix rij(i,j = 1,2,3) representing the

relative attitude, and vector ()1,2,3i it
=

 representing the relative

position (Hyun et al. 2018). In the k th observation, ,k ir is

the coordinates of the ith landmark. Landmark coordinates

kr , which are observation data, are defined as a set of

(), 1, ,8k i ir
= …

.

11 12 13 1

21 22 23 2

31 32 33 3

k

r r r t
p r r r t

r r r t

 =

 (3)

,

,
k i

k i

x
r

y

=

 (4)

, , ,1 2

T
k k k k nr r r r = …
 (5)

The deep learning model HRNet also represents the

confidence of the resulting coordinates, with a value

ranging as 0–1 when outputting the result (Sun et al. 2019).

In general, the weight is the reciprocal of the observation

variance. In this study, we define these weights as the

reliability of deep learning estimation.

2

1
ii

i

W
σ

= (6)

3. RESULTS

3.1 Software Simulations

Software simulations were conducted to verify the pose

estimation algorithm based on deep learning and to

determine the causes of errors. In the software simulations,

500 verification images generated by UE4 were used as test

images. Therefore, the exact position and orientation

information of the camera and simulator were known for

each image, and the true values of the 2D landmark

coordinates in the image were recorded. These true

landmark coordinate values were later used as the actual

values. The errors in the landmark coordinates can be

obtained through comparisons of the estimated and actual

values. The vector size of the difference (Ep) between the

estimated coordinates value (
esX

) and the actual coordinate

value (
trueX

) is defined as a landmark error: p es trueE X X= −

.

The average landmark estimation error of the 500 validation

data points was 7.3918 pixels for an image size of 720 × 540

pixels.

The pose was calculated using the weighted nonlinear

least-squares method from the estimated landmark

coordinates. Position and orientation errors were defined to

calculate the accuracy of the results. The relative position

error (ET) was calculated using the vector size of the

difference between the actual and estimated positions:

T true estE t t= −
 . The relative orientation error (ER) is defined

as Hamiltonian product of the actual orientation quaternion

(qtrue) and the estimated orientation quaternion (qest):

()12 T
R est trueE cos q q−= ⋅ (Kisantal et al. 2020). During the

generation of synthetic data, the relative distance between

the camera and the simulator was designated in the range of

approximately 50–160 cm considering the actual laboratory

environment. The average relative position error was 3.26

cm and the average orientation error was 14.14°. Fig. 7

shows the results of the software simulation using the

verification image as sample data. The blue dots represent

the actual landmarks, and the red dots represent the

landmarks estimated by deep learning. In addition, the

green dots represent the final landmarks predicted using the

weighted nonlinear least-squares method.

3.2 Software Simulation Analysis: Distance, Rotation, and
Landmark Error

We analyzed the error trend of 500 verification data points

according to the relative distance between the camera and

the simulator. In Fig. 8, the X-axis represents the distance

from the center of the simulator to the camera. In the upper

graph, the Y axis represents the distance error, which is

the difference between the estimated and actual positions.

Whereas, the Y axis in the lower graph represents the

orientation error. The red line is a second-order polynomial

parabolic graph indicating the tendency of the overall error.

Consequently, when the distance between the camera and

the simulator increased, the pose error increased.

We also analyzed the error trend according to the relative

rotation between the camera and simulator. In Fig. 9, the

X-axis represents the relative rotation between the camera

and the simulator. In the upper graph, the Y-axis represents

the distance error and that in the lower graph represents

the orientation error. The red parabolic line is a second-

order polynomial parabolic graph exhibiting the tendency

of the overall error. Overall, even when with increased in the

relative rotation, the pose error did not change significantly.

We also analyzed the variation of the pose error according

to the landmark coordinate estimation error. The coordinate

68https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

estimation error was expressed as pixels. In Fig. 10, the

X-axis represents the average values of the eight landmark

errors estimated by deep learning. The Y-axis of the upper

and lower graphs represent the position and orientation

errors, respectively. The red parabolic line is a second-order

polynomial parabolic graph exhibiting the tendency of the

overall error. Because the relative position estimation Was

less affected by landmark errors, the position error yielded a

Fig. 7. Actual landmarks (blue), estimated landmarks (red) and predicted final pose (green) on examples of synthetic image.

Fig. 8. Software simulation analysis: position error (top) and orientation error
(bottom) according to relative distance.

Fig. 9. Software simulation analysis: position error (top) and orientation error
(bottom) according to relative rotation.

69 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

constant value regardless of the landmark estimation error.

The orientation error tended to increase with the landmark

estimation error. The orientation was determined using a 2D

landmark arrangement. Therefore, even in case of a slight shift

in the 2D landmark’s coordinate location, the error increased.

3.3 Hardware Simulations

We estimated the pose between the camera and

simulator using hardware experiments. In the experiment,

a camera-mounted simulator approached the observation

target, and external personnel performed the movements

of the simulator. The total experiment time was 50 s, and

the landmarks were estimated by capturing pictures every

second (51 photos in total). The pose between the camera

and simulator was predicted from the estimated landmark

coordinates and compared with the reference data

obtained from motion capture. The results of the software

simulation were compared with those of the hardware test.

Subsequently, using a deep learning model trained with

various noises, we analyzed how the pose estimation results

varied depending on the noise in the learning image.

3.3.1 Configuration of Hardware Test Bed: Computer, Camera,
and Data Networks

The simulator used linear air bearings to perform

translational motion on a table with minimal friction.

In addition, through adjustments of the balance of the

attached mass units, the center of gravity and rotation were

matched to ignore the gravitational torque. A three-degree

friction-free rotation motion was performed using spherical

air bearings. Consequently, the satellite simulator can

simulate frictional 5-DOF motion (Eun et al. 2018).

We set the DL computer specifications such that the DL

model could perform smoothly. Moon (2022) described the

main hardware configuration (Moon 2022). The internal

parameter matrix of the camera was measured using the

GML C++ Camera Calibration Toolbox v0.72, developed by

the National University of Moscow Graphics and Media Lab

(Zhang 2000).

Transmission and reception are based on socket

communication and network folder sharing. In this study,

while executing a deep learning program on a deep learning

computer, a command was sent to the simulator computer

to record via the camera every second. Upon receiving

this command, the simulator computer (OBLIX) sent a

photography command to the camera and stores the image

in a network-sharing folder with the deep learning computer,

which estimates landmark coordinates by inputting the

stored image into the model and predicts the pose using

the weighted NLS method. The calculated pose data are

transmitted and stored on a simulator computer through

socket communication. Fig. 11 illustrates this process.

We used motion capture data as the reference data

(actual data). The motion capture is called Primex-13. It was

manufactured at OptiTrack in San Francisco, CA, USA. It

tracks passive and active with positional error less than ±
0.20 mm and rotational errors less than 0.5°. Eight sensing

cameras were installed on the ceiling around the laboratory

testbed and location-detection sensors were attached to the

simulator. Any motion captured the observed locations of

the sensors in real time. Consequently, the motion capture

program converts the location of the sensors into a pose

between the camera and the fixed simulator (ASTERIX).

3.3.2 Hardware Test Results Analysis

The simulator with the camera was arbitrarily moved,

whereas the other was photographed. Consequently, the

Fig. 10. Software simulation analysis: position error (top) and orientation
error (bottom) according to the landmark coordinate estimation error by
deep learning.

Fig. 11. Configuration of data transmission and reception.

70https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

pose between the camera and simulator was calculated and

recorded in real time. Fig. 12 shows the landmarks estimated

using deep learning (blue dots). Total of 51 images were

captured.

The predicted poses were compared with the actual

values, and the results are listed (Table 1). For 51 test data

points, the average value of position errors excluding the

results of the motion capture using deep learning was [–11.92

mm 1.94 mm 1.22 mm] for the X-, Y-, and Z-axis directions,

respectively. The variance of the position error (absolute

value) was [16.85 mm 7.17 mm 9.75 mm]. The X-axis is

estimated to be biased and approximately 11.92 mm smaller

on average than the true value. Whereas, Y- and Z-axis errors

were estimated to be 1.94a 1.22 mm larger, respectively.

Therefore, the Y- and Z-axis errors perpendicular to the gaze

direction were not largely biased toward one side. However,

the X-axis, which is the gaze direction, was deflected less

than the actual value. It was confirmed that the X-axis error

in the gaze direction had the largest absolute value, whereas

the Y- and Z-axis error values were relatively small. The

orientation errors on the X-, Y-axis-, and Z-axes were 0.6526°,

2.9342°, and 6.3758°, respectively. In addition, the average

vector size of the position error was 23.84 mm and the

posture error was 7.47°.

3.3.3 Requirements for Accuracy of Hardware Experiments for
Docking

When analyzing the structure of the two simulators and

docking ports, as shown in Fig. 13, the horizontal distance (a)
among the requirements for docking is 605.0 mm and the

orientation accuracy requirement (θ) is 2.1° from the camera.

In addition, the rotational accuracy requirement of the target

simulator (∅) was 5.4°. The absolute orientation error in the

hardware experiment when approaching within 605.0 mm was

2.44°. The orientation error results slightly exceeded the

docking requirements. The image on the right side of Fig. 13

shows the movement path of the simulator during the

hardware experiments. ASTERIX was photographed with

landmarks. The OBELIX was moved using an external force.

The red point is the starting point of the movement, and the X

mark indicates the end point of the movement. Fig. 14 shows

Fig. 12. Real image samples taken by the hardware experiment shows landmarks (blue) estimated by deep learning.

Table 1. Hardware test results: position and orientation error

X-axis Y-axis Z-axis

Position error by axis –11.92 mm 1.94 mm 1.22 mm

Position error variance by axis 16.85 mm 7.17 mm 9.75 mm

Position error average 23.84 mm

Orientation error by axis 0.6526° 2.9342° 6.3758°

Orientation error average 7.47°

71 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

the position and orientation errors according to the relative

distance and draws a trend line. As the relative distance

increased, both the position and orientation errors tended to

increase. Fig. 15 compares the X-, Y-, and Z-axis position

prediction results with the actual values and shows the

orientation error. Fig. 16 shows the graph obtained by

subtracting the actual value from the predicted value of the

relative position vector. For the relative position prediction

results, the overall tendency was consistent even when the

distance changed. In the case of the X-axis, when it was far, the

predicted value was somewhat larger or smaller than the actual

value; however, when it was approximately 70 cm, the

predicted value continued to be smaller than the actual value.

In the case of the Y-axis, the error was somewhat large when

the X- and Y-axis distances were long but did not converges

close to the actual value when they were close. In the case of

the Z-axis error, the error value increased when the distance

was long and converged to the actual value when it is close.

In Fig. 15, the orientation error decreased as the distance

decreased. When the distance was small, the resolution

increases accordingly. In addition, the overall result

tended to be unstable because it was sensitive to landmark

coordinate errors in the image.

Table 2 summarizes the time spent on the calculation and

communication processes of the hardware experiments.

The average time required to estimate the landmarks of an

image using deep learning was 0.2471 s. The average time

required to transfer the estimated landmark to MATLAB,

predict the pose, transfer the predicted result value to

the simulator computer, and store it was 0.0184 s. The

average total time spent on deep learning operation, data

transmission, and pose prediction was 0.2656 s. The time

required for deep learning operations accounted for 93% of

the total processing time.

3.4 Comparing Software Simulation and Hardware Test

Table 3 presents the results of the comparison between

the software simulation and hardware tests. To accurately

compare the results, 51 synthetic images with the same

relative distance as in the hardware experiment were

created, and the image noise variance was 0.01. For the

distance errors, the software simulation was 17.61 mm, and

the hardware test was 23.84 mm. The orientation errors are

6.89° and 7.47°, respectively. For the software simulation, the

distance error were 73.87% and 92.24% of the hardware test.

The X-, Y-, and Z-axis position errors of software simulation

was [13.35 mm 3.21 mm 8.83 mm] and the hardware

experiment result was [16.85 mm 7.17 mm 9.75 mm]. The

order of the size of the errors was the X, Z, and Y-axis. For

Fig. 13. Simulator requirement diagram for docking (left), simulator movement path in the hardware experiment (right).

Fig. 14. Analysis of distance (top) and orientation (bottom) tendency
according to relative distance.

72https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

the X-, Y--, and Z-axes, the orientation errors of the software

simulation were [0.5513° 3.4875° 5.4101°] and those of the

hardware experiment were [0.6526° 2.9342° 6.3758°]. The

error in the z-axis direction was the largest, and the order of

the error sizes was the same for Y and x-axes.

The position error in the x-axis direction is the largest

because it is the camera’s gaze direction; therefore, it

is estimated by the size of the target (distance between

landmarks) and not by direct distance information. In

addition, the orientation error in the Z-axis direction was

large, because the simulator with the camera rotated along

the Z-axis and moved horizontally (Y-axis). Therefore, it

is necessary to estimate the values of the two variables

simultaneously to estimate the orientation along the Z-axis.

In addition, the arrangement of the landmark numbers

in Fig. 3 indicates that, when rotated on the Z-axis, there

Fig. 15. Relative position estimation comparison results and orientation error graph: prediction (blue) and motion capture (red).

73 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

appeared a situation wherein the landmarks 3, 4, 7, and 8

were arranged approximately as a straight line. Therefore,

the 2D landmarks of the corresponding number overlap,

and the orientation prediction error of the Z-axis increased

according to the landmark coordinate estimation error.

Comparison of the software simulation and hardware

test results, indicated the former as being more accurate.

This is because the training and test images were synthetic

images generated in the same virtual environment and had

the same noise. The real image from the hardware test had

a relatively large estimation error, because the generation

environment and noise values were different. However,

the size tendency of the errors by axis was consistent and

the overall average error size was similar. Therefore, a deep

learning model trained using synthetic images generated

in a virtual environment can be applied to real images.

In addition, when a virtual environment, such as a real

environment, is implemented and software simulation

results are obtained, the actual hardware experimental

results can be predicted from the results.

As a result of comparing the software simulation and

hardware experiments in this study, the size and tendency

of the pose-estimation errors were almost similar. Therefore,

we predict that the results of actual experiments in real

space will be similar to those of the software experiments

conducted in this study.

3.5 Comparison of Experimental Results according to
Image Noise

We used real images captured with a camera in a

hardware experiment as test data. Therefore, estimating

an accurate noise value was challenging because it varied

depending on the camera settings and lighting environment.

In addition, image analysis using deep learning is difficult

owing to the increase in the noise in the image (Nazaré et al.

2018). Therefore, we analyzed the hardware experimental

results by adding different levels of noise to the training

images. We input noise by dividing it into five stages, and

compared the pose errors in each case. Consequently, the

effects of image noise used for deep learning training were

summarized and analyzed.

Image noise refers to a phenomenon such as noise in

the background within a signal obtained from an image

Fig. 16. Hardware experiment results: relative position error.

Table 2. Time spent processing and communication

Processing list Time (seconds)

Landmark estimation using deep learning 0.2471

Data transmission/reception and pose prediction 0.0184

The total process 0.2656

Table 3. Software simulation vs hardware test

Software simulation Hardware test

Number of images 51 51

XYZ-axis position error [13.35 3.21 8.83] mm [16.85 7.17 9.75] mm

Distance error 17.61 mm 23.84 mm

XYZ-axis rotation error [0.5513 3.4875 5.4101]° [0.6526 2.9342 6.3758]°

Angular error 6.89° 7.47°

74https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

captured by a camera. The noise values were expressed

as mean and variance, and we set only the case where the

average was 0. In this study, as gray images were used, zero

implied that gray noise was added to the picture; however,

the overall brightness did not change. Variance implies the

magnitude of gray noise, thus when the variance was 0,

there was no noise. As the noise increased, the magnitude

of the noise increased. The noise of the training image

was divided into five stages and applied to the hardware

experiment.

We input gray noise into the image using a MATLAB

function. The average gray noise was fixed at 0, and the

variance values were set to 0, 0.001, 0.01, 0.1, and 1. It was

confirmed that the higher the noise variance value, the

lower the image quality. Five deep learning models were

individually trained using these images. In addition, 150

real images generated by additional hardware experiments

were input into the deep learning model to estimate the

landmark. Consequently, the pose error between the

camera and simulator was calculated using a weighted NLS

method. Finally, the tendency of the error according to the

gray noise variance of the training image was analyzed.

Table 4 lists the average position and attitude errors of

the 150 real images according to the noise of the training

images. In the absence of noise (variance 0), and when

the noise was large (variance 1), both the position and

orientation errors were relatively large. The position error

was the smallest when the noise variance was 0.001. In

addition, the orientation error was smallest when the noise

variance was 0.1. When the noise variance was 0.1 or less,

the estimation errors were similar. Therefore, to apply the

deep learning model to a real image, noise less than 0.1

must be added to the synthetic image for training.

4. SPACE ENVIRONMENT SIMULATION

The final goal of this study was to automatically dock

rendezvous and remove space debris using visual data. Thus,

the pose of the target must be predicted accurately, even

in the absence of a visual sensor or pattern on it. Therefore,

deep learning, which does not require a specific sensor and

can be used with various backgrounds, was employed for

visual data analysis. Because obtaining many real images

captured in space is difficult, Thus, we implemented a

virtual environment that simulated a laboratory and flight

test bed. We then trained a deep learning model using the

generated synthetic images. In addition, it was verified that

the deep learning model trained with only synthetic images

could be applied to a real image through comparisons of the

results of the software simulation and hardware test.

4.1 Spacecraft Model and Virtual Environment for Generating
Data

The satellite model used was Pumbaa, a 2U-sized satellite

from the CANYVAL-C mission (Kim et al. 2019). As shown

in the left image in Fig. 17, the 3D coordinates of the 16

vertices representing the geometric characteristics of the

spacecraft were recorded by setting the geometric center

of the spacecraft as the origin. In addition, numbers 1–16

were assigned to each landmark. Landmarks 1–8 in Fig.

17 represent the vertices of the spacecraft solar panel, and

landmarks 9–16 correspond to the vertices of the satellite’s

rectangular parallelepiped body. In addition, the landmarks

and shapes of the satellite were displayed using MATLAB, as

shown in the right image of Fig. 17.

The spacecraft’s 3D CAD model was inserted into UE4.

Because the existing model had the same color on the

four sides of the solar panel and body, we eliminated

symmetry by painting the sides of the solar panel and body

in different colors. We assumed that a camera was attached

to another spacecraft and considered this as an observation

spacecraft, or simply a camera. We also constructed the

Earth model and lighting environment to generate images

of the spacecraft orbiting the Earth’s low orbit (Unreal

Engine, 2020). It was assumed that the spacecraft orbited

at an altitude of 780 km. The lighting conditions were set to

20 lx in the simulation, assuming that the actual solar light

on Earth was 120,000 lx and that the shutter speed of the

camera was 1/6,000 s. In addition, the light reflected from

the Earth was set to 6 lx, considering the Earth’s albedo.

Herein, 4,000 images were created by setting each image

to have random positions and rotations within the range,

and the location and rotation of each image were recorded.

The position and gaze direction of the camera were fixed

along the direction of the Earth’s center. The relative

distance between the camera and the satellite was 1–10 m

along the direction of the camera’s gaze, and 0.3–3 m along

the vertical direction of the camera’s gaze. This ensured that

the entire image of the satellite could be observed in the

Table 4. Hardware test results according to noise variance of training
data

Noise variance Position error (mm) Orientation error (°)

0 70.27 19.38

0.001 31.94 11.54

0.01 33.98 12.27

0.1 36.98 9.68

1 402.81 43.58

75 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

background of the Earth. In addition, the satellite’s rotation

was set to have a random value within ± 80° based on the

absolute coordinate axis for each axis, and the its rotation

quaternion was recorded for each image. The size of the

image captured by the camera was set to 1,280 × 960 pixels,

the viewing angle was 90°, and the focal length was set to

640 mm. Fig. 18. shows the image sample generated in this

manner. Earth, which was the background, was made to

show random sides for each image.

4.2 Deep Learning Model Training and Pose Prediction

HRNet was used as the deep learning model. The size of

the image was reduced to 256 × 192, and the model

parameters were set to be the same, except for the color

image. Of the total 4,000 data points, 3,600 (90%) were used

as data for training the deep learning model. The remaining

400 (10%) were used as test data to estimate the 2D

landmark coordinates and predict the pose of the target

satellite. The pose was calculated from the landmark

coordinates using the nonlinear least-squares method. The

position error Was also calculated as a ratio (ET), which is

the difference between the actual distance and the

prediction divided by the actual distance: 2

2
TE −=

*

*

t t
t . By

calculating the poses of 400 verification data points, the

distance error (ET) was 0.044 m, position ratio (TE) was
obtained as 0.86%, and orientation error (ER) was 11.11°. Fig.

19 shows the final estimated landmark coordinates on the

Fig. 17. 3D CAD model of spacecraft (left), and 3D landmark coordinate in MATLAB (right). MATLAB, MATrix LABoratory.

Fig. 18. Spacecraft image samples with the Earth’s background generated by unreal engine 4
(UE4).

76https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

cropped spacecraft images (green lines).

4.3 Analysis of the Results of Spacecraft Software Simulation

For the 400 verification data points, we drew a graph to

analyze the pose error according to the relative distance

between the observation and target spacecraft. The

average and standard deviations of the pose errors were

calculated based on the relative distance. The mean and

standard deviation were calculated using 100 data each

in 1 m units for 3–10 m. For the data used in the result

analysis, the relative distance was fixed at 1 m, and the

orientation was randomly set. A total of 100 new test data

points were generated at 1 m intervals, landmarks were

estimated using the trained deep learning model, and the

pose was predicted. Fig. 20 shows the mean and standard

deviation (3σ) for each relative distance. The graph on the

left shows the relationship between the relative distance

and the distance error. The error increased rapidly from

a relative distance of 6 m. The graph on the right shows

the relationship between the relative distance and the

orientation error. The orientation error rapidly increases

from a relative distance of 5 m.

When comparing the software simulations and hardware

experiments conducted in this study, the errors were similar.

Therefore, the error tendency can be predicted based on

the relative distance when using a 2U-sized spacecraft. In

addition, we propose that the distance limit condition for

Fig. 19. Four cropped spacecraft image samples of different pose and background. Final
landmarks are connected by green lines.

Fig. 20. Analysis of the relative distance (top) and orientation (bottom) error according to relative distance.

77 https://janss.kr

Shinhye Moon et al. Spacecraft Pose Estimation Algorithm using Deep Learning

obtaining stable results within relative distance error of 70

mm and 20° posture error is approximately 4 m.

Table 5 presents a comparison of the results of our study

with other spacecraft pose estimation results. Proença

& Gao (2019) used deep learning model ResNet50 and

simulated UE4 to generate synthetic images of 7.48 m-size

spacecraft called Soyuz. The total number of images for

training was 4,500. When the color image resolution was 320

× 240, the distance error was 1.6 m and the orientation error

was 24.9°. Sharma & D’Amico (2019) introduced spacecraft

pose network (SPN) to estimate the pose and SPEED. They

used a 1.30 m-size Tango as spacecraft model and trained

the SPN with 12,000 gray images. For the resized 224 × 224

pixels, the distance error was [0.055 0.046 0.78] m and the

orientation error was 8.4254°. Considering the amount of

training data and relative distance, our study produced

good results for both distance and orientation errors. This

is because the HRNet is an optimized model for identifying

key points (Sun et al. 2019). In addition, Proença & Gao

(2019) directly estimated the pose through deep learning.

Sharma & D’Amico (2019) detected a 2D bounding box in an

image around a target and estimated the relative distance

from the diagonal length ratio. Therefore, estimating the

coordinates of the 2D landmark using the least squares

method is more accurate than the other methods.

5. CONCLUSIONS

This study developed an algorithm for estimating the

relative position/rotation (pose) between a spacecraft and

a camera from images. For actual space utilization, virtual

images were created to build an estimation system, which

was verified through hardware experiments. Image analysis

using deep learning is applicable even when a specific

sensor or pattern is not attached and the background is

complex. To compare the software simulation and hardware

experimental results, a virtual environment simulating

a laboratory was implemented and artificial images of

the observed objects with various relative positions and

postures were generated. The relative pose of the object

was predicted based on the nonlinear least-squares

method using the estimated landmark coordinates. Further,

hardware experiments were performed, and the algorithm

was applied to actual images for comparison with software

simulations under the same relative distance conditions.

This study verified that a real-time relative pose estimation

system could be constructed and applied to actual images

using a deep learning model trained with virtual images.

It was shown that the results of the hardware experiment

could be predicted from the software simulation owing

to the estimation error results of the software simulation

and the hardware experiment being similar. Software

simulations of spacecraft images orbiting the Earth were

also conducted to predict actual estimation errors and

propose a distance range to which algorithms could be

applied. This work can contribute to pose identification

during automatic rendezvous and docking experiments

using a testbed.

ACKNOWLEDGMENTS

This study was supported by the Challengeable Future

Defense Technology Research and Development Program

(Grant No. 912908601) of the Agency for Defense Development

(2023).

ORCIDs

Shinhye Moon https://orcid.org/0009-0001-8346-9626

Sang-Young Park https://orcid.org/0000-0002-1962-4038

Seuuggwon Jeon https://orcid.org/0009-0003-5724-7805

Dae-Eun Kang https://orcid.org/0000-0002-0899-1334

Table 5. Software simulation of spacecraft in the background of Earth: Comparison of results with other studies

Proença & Gao (2019) Sharma & D’Amico (2019) Ours

Satellite model Soyuz Tango Pumbaa

Deep learning model ResNet-50 SPN HRNet

Input image size 320 × 240 224 × 224 256 × 192

Color/Gray Color Gray Color

Number of training images 4,500 12,000 3,600

Satellite size 7.48 m 1.30 m 0.30 m

Distance range 10–40 m 3–50 m 1–10 m

Distance error 1.6 m [0.055 0.046 0.78] m 0.044 m

Orientation error 24.9° 8.4254° 11.1°

SPN, spacecraft pose network; HRNet, high-resolution network.

78https://doi.org/10.5140/JASS.2024.41.2.61

J. Astron. Space Sci. 41(2), 61-78 (2024)

REFERENCES

Chen B, Cao J, Parra A, Chin TJ, Satellite pose estimation with

deep landmark regression and nonlinear pose refinement,

in 2019 IEEE/CVF International Conference on Computer

Vision Workshop (ICCVW), Seoul, Korea, 27-28 Oct 2019.

Choi AJ, Yang HH, Han JH, Study on robust aerial docking

mechanism with deep learning based drogue detection

and docking, Mech. Syst. Signal Process. 154, 107579 (2021).

https://doi.org/10.1016/j.ymssp.2020.107579

Eun Y, Park SY, Kim GN, Development of a hardware-in-the-

loop testbed to demonstrate multiple spacecraft operations

in proximity, Acta Astronaut. 147, 48-58 (2018). https://doi.

org/10.1016/j.actaastro.2018.03.030

Garcia A, Musallam MA, Gaudilliere V, Ghorbel E, Ismaeil KA,

et al., LSPnet: a 2D localization-oriented spacecraft pose

estimation neural network, Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, Nashville, TN, 19-25 Jun 2021.

Hyun J, Eun Y, Park SY, Experimental study of spacecraft pose

estimation algorithm using vision-based sensor, J. Astron.

Space Sci. 35, 263-277 (2018). https://doi.org/10.5140/

JASS.2018.35.4.263

Kim GN, Park SY, Kang DE, Son J, Lee T, et al., Development

of CubeSats for CANYVAL-C mission in formation flying,

in APISAT 2019: asia pacific international symposium on

aerospace technology, (Engineers Australia, Gold Coast,

Australia, 2019) 813-824.

Kingma DP, Ba J, Adam: a method for stochastic optimization,

Proceedings of the 3rd International Conference for Learning

Representations, San Diego, CA, 7-9 May 2015.

Kisantal M, Sharma S, Park TH, Izzo D, Märtens M, et al., Satellite

pose estimation challenge: dataset, competition design, and

results, IEEE Trans. Aerosp. Electron. Syst. 56, 4083-4098

(2020). https://doi.org/10.1109/TAES.2020.2989063

Mayfield M, Industry offering on-orbit satellite servicing, Natl

Def. 105, 25-26 (2021).

Moon S, Design and verification of spacecraft pose estimation

algorithm using deep learning, Master Thesis, Yonsei

University (2022).

Nazaré TS, Paranhos da Costa GB, Contato WA, Ponti M, Deep

convolutional neural networks and noisy images, in Progress

in Pattern Recognition, Image Analysis, Computer Vision,

and Applications: 22nd Iberoamerican Congress, CIARP

2017, Valparaíso, Chile, 7-10 Nov 2017.

Opromolla R, Fasano G, Rufino G, Grassi M, Uncooperative pose

estimation with a LIDAR-based system, Acta Astronaut.

110, 287-297 (2015). https://doi.org/10.1016/j.actaastro.

2014.11.003

Phisannupawong T, Kamsing P, Torteeka P, Channumsin S,

Sawangwit U, et al., Vision-based spacecraft pose estimation

via a deep convolutional neural network for noncooperative

docking operations, Aerospace 7, 126 (2020). https://doi.

org/10.3390/aerospace7090126

Proença PF, Gao Y, Deep learning for spacecraft pose estimation

from photorealistic rendering, in 2020 IEEE International

Conference on Robotics and Automation (ICRA), Paris,

France, 31 May-31 Aug 2020.

Sanders A, An Introduction to Unreal Engine 4 (1st ed.) (A K

Peters, New York, 2016).

Sharma S, D’Amico S, Pose estimation for non-cooperative

rendezvous using neural networks, in AIAA/AAS Space

Flight Mechanics Meeting, Maui, HI, 13-17 Jan 2019.

Sun K, Xiao B, Liu D, Wang J, Deep high-resolution representation

learning for human pose estimation, Proceedings of the 2019

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Long Beach, CA, 15-20 Jun 2019.

Zhang Z, A flexible new technique for camera calibration, IEEE

Trans. Pattern Anal. Mach. Intell. 22, 1330-1334 (2000).

https://doi.org/10.1109/34.888718

