
139Copyright © The Korean Space Science Society http://janss.kr plSSN: 2093-5587 elSSN: 2093-1409

Received 25 MAY 2017 Revised 31 MAY 2017 Accepted 1 JUN 2017
†Corresponding Author

Tel: +82-2-2123-5687, E-mail: spark624@yonsei.ac.kr

ORCID: https://orcid.org/0000-0002-1962-4038

 This is an Open Access article distributed under the terms of the
Creative Commons Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted
non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Technical Paper
J. Astron. Space Sci. 34(2), 139-151 (2017)
https://doi.org/10.5140/JASS.2017.34.2.139

A Deep Space Orbit Determination Software: Overview and Event
Prediction Capability

Youngkwang Kim, Sang-Young Park†, Eunji Lee, Minsik Kim
Department of Astronomy, Yonsei University, Seoul 03722, Korea

This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification
results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment
to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction
for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To
achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data
simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in
event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction
capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate
system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies.
Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-
fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict
celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements
of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than
10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we
conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

Keywords:	deep space navigation, Korea pathfinder lunar orbiter, event prediction

1. INTRODUCTION

For deep space exploration, deep space navigation tech-

niques are essential. The deep space navigation process

includes three major components: tracking spacecraft, orbit

determination, and guidance operation. To track spacecraft in

deep space, ground-based radiometric and onboard optical

measurements are typically used. The deep space network

(DSN) is the best-known ground station network providing

radiometric tracking services. Onboard optical measurements

may or may not be used for deep space navigation, depending

on mission requirements. For instance, the Mars Pathfinder,

Mars Climate Orbiter, and Mars Polar Lander only used

radiometric tracking data for deep space navigation (Thornton

& Border 2003). Orbit determination is a process for estimating

the previous or current orbital state and spacecraft properties

using tracking data. Based on the orbit determination results,

guidance operations are applied to spacecraft to maintain or

achieve the desired trajectory.

There have been efforts to develop deep space navigation

software to support deep space missions using ground-based

radiometric spacecraft tracking. Although government space

agencies capable of deep space missions may have their own

in-house deep space navigation software packages, there

are few deep space navigation software packages available

or purchasable for the general public. General Mission

Analysis Tool (GMAT) is an open-source software package

developed by the Goddard Space Flight Center (GSFC) and

collaborators, and GMAT has an external navigation plugin

including the DSN two-way range, Doppler observation

140https://doi.org/10.5140/JASS.2017.34.2.139

J. Astron. Space Sci. 34(2), 139-151 (2017)

models, and a batch least squares estimator (Hughes et al.

2017). The GSFC is planning to replace the legacy software

package GTDS with GMAT, and the first target is to operate

the SOHO mission with GMAT in the near future (Hughes

et al. 2017). MONTE is a commercial software package

developed by the Jet Propulsion Laboratory (JPL). MONTE

is based on the JPL’s legacy software packages DPTRAJ and

ODP, and has served all of JPL’s deep space missions, such

as Cassini and Gravity Recovery And Interior Laboratory

(GRAIL), since 2012 (JPL 2017). The orbit determination tool

kit (OTDK) is a commercial software package developed by

Analytical Graphics Inc., and has been successfully applied

to the Lunar Atmosphere and Dust Environment Explorer

(LADEE) mission along with the company’s other software

package, Systems Tool Kit (STK) (D’Ortenzio et al. 2015).

There are pros and cons of using commercial or open-source

deep space navigation software to support a deep space mission.

Using commercial or open-source deep space navigation

software can save time and efforts compared to developing and

maintaining mission-specific deep space navigation software.

Sometimes, using external navigation software can be cost-

effective compared to developing mission-specific navigation

software when there is no legacy software to refer to for the

development. Conversely, the usage of commercial or open-

source deep space navigation software is not always acceptable,

depending on mission requirements and specifications.

For instance, the current version of GMAT does not support

prediction of solar outage but predicting solar outage may

provide necessary support to a deep space mission in certain

situations. In addition, the specific software input and/or output

interface may differ from desirable interface specifications.

Thus, using commercial or open-source deep space navigation

software can be a good option, if the mission requirements

and interface specifications are well supported by affordable

software packages. However, where this is not the case, it is

necessary to develop mission-specific deep space navigation

software.

This paper introduces deep space orbit determination

software (DSODS), which is a Mathwork’s MATLAB object-

oriented programming environment-based navigation software

for deep space missions developed by Yonsei University in

collaboration with the Korean Aerospace Research Institute

(KARI) to support the Korea Pathfinder Lunar Orbiter (KPLO)

mission. DSODS has three major capabilities: celestial event

prediction for spacecraft, orbit determination with DSN tracking

data, and DSN tracking data simulation. DSODS satisfies

the current functionality requirements of the KPLO mission

regarding orbit determination, data simulation, and event

prediction, and will support the related interface specifications

for the KPLO. This paper addresses only the validation

and verification of event prediction capability. Its orbit

determination and tracking data simulation capabilities are

validated and verified for lunar missions based on processing

and analysis of the flight data of Lunar Prospector, which was

one of the National Aeronautics and Space Administration

(NASA) Discovery missions (Kim et al. 2017a, b; Lee et al. 2017).

There are two goals of this paper: introducing an overview

of DSODS and addressing event prediction capabilities in

terms of how they work and their validation and verification.

Three main drivers affected the overall design of the

DSODS: compatibility with GMAT, the interfaces between

modules, and the input and output data specifications. The

compatibility with GMAT was important because the orbit

propagation (OP) module now utilizes GMAT as a third-

party software component, and GMAT has been in charge of

handling fundamental astrodynamics-related operations. This

decision has significantly shortened the overall development

period of DSODS, and minimized the efforts spent on the

development and testing of the OP module. However, a

drawback of using large third-party software such as GMAT is

that the limitations of GMAT are the same as those of DSODS.

For instance, currently, GMAT and DSODS only support

gravitational potential data with a degree and order equal

to or less than 165. To mitigate such limitations, all GMAT

dependent components are located in the OP module and

isolated from event prediction (EP), data simulation (DS), and

orbit determination (OD) modules. Thus, only the OP module

needs to be modified to replace GMAT with another third-

party software, if necessary.

The EP module determines the locations of events in

the time domain based on a geometrical approach (Parker

& Hughes 2011). Currently, the EP module satisfies the

functionality requirements of the KPLO (Song et al. 2016), and

is expected to satisfy the future performance requirements

of the KPLO. The EP module consists of three major

components: event functions, an analytical event location

algorithm, and a mesh-refinement algorithm. An event

function is defined as when a corresponding type of event

(e.g., eclipse) occurs, the value of the event function is always

equal to zero. From such a definition, it is clear that finding

the roots of the event function is equivalent to locating the

event. To find the roots of the event function, the analytical

event location algorithm utilizes a cubic Hermite spline

and analytical roots of the cubic equation. The merit of the

analytical event location algorithm is that it does not require

an iterative process to locate the roots. For accuracy control of

the event prediction results, a mesh-refinement algorithm is

applied to the EP module because event prediction accuracy

is dependent on the event function data-sampling rate. The

mesh-refinement algorithm estimates the relative errors

141 http://janss.kr

Youngkwang Kim et al. Deep Space Orbit Determination Software: Overview

between the event prediction solutions from two different

sampling rates, and applies increased sampling rates in the

intervals where the relative errors do not satisfy the user-

defined tolerance. To validate and verify the event prediction

capabilities of DSODS, a carefully selected set of test problems

is implemented according to the functionality requirements,

and the external truth data are generated using flight-proven

software packages such as Spacecraft Planet Instrument

C-matrix Events (SPICE), STK, and GMAT.

In Section 2, a brief explanation of the Common Utility

and Class Library (CUCL) and the highest-level data flows

for event prediction, orbit determination, and tracking

data simulation are presented. Sections 3 and 4 address OP

and EP modules in light of their responsibilities and how

they work, respectively. In addition, Section 4 includes the

validation and verification results on the DSODS event

prediction capabilities. In Section 5, the summary and

conclusions of this study are presented.

2. DSODS OVERVIEW

This section presents an overview on some important

features of DSODS including the user environment, CUCL,

and representative examples on its major applications

with key data flows. Now, DSODS supports a script-based

user interface, and is executable with a MATLAB 32-bit

version higher than 2013b under Microsoft’s Windows

OS environment. Such limitations exist for two reasons.

First, DSODS was developed based on MATLAB object-

oriented programming, and the MATLAB object-oriented

programming environment is rapidly changing due to its

active development. Second, DSODS includes some 32-bit

MATLAB executable files to improve execution speed, and to

interface GMAT because GMAT is a 32-bit application mainly

written in C++ with some legacy FORTRAN components. Note

that GMAT has been used for fundamental astrodynamics-

related operations as a third-party component. The details

of the MATLAB-executable (MEX) based GMAT interface is

introduced in Section 3.

DSODS consists of one library named CUCL, and four

modules: OP, EP, DS, and OD modules. The CUCL includes

common utilities and fundamental classes used by multiple

modules such as the epoch time, coordinate, ephemeris,

spacecraft, and ground station classes, etc. The OP module is

responsible for fundamental astrodynamics operations such

as time and coordinate system conversions, orbit propagation

of spacecraft orbit, and providing ephemerides of celestial

bodies. The EP module is responsible for predicting celestial

events such as eclipses, apsis passages, node crossings, solar

communication interferences, and ground station visibilities.

The DS and OD modules are closely tied, and responsible

for orbit determination of spacecraft and tracking data

simulation. The DS module includes the DSN sequential range

and Doppler observation models, their noise characteristics,

and media and antenna correction models. Using the DS

module, the OD module conducts orbit determination with

DSN tracking data files written in tracking data message

(TDM) format, which is an international tracking data format

standard defined by the Consultative Committee For Space

Data Systems (CCSDS). The OD module generates pseudo

DSN tracking data written in the TDM format. In the OD

module, a batch least squares estimation algorithm has

been implemented to solve the orbit determination problem

(Cappellari et al. 1976). In addition, the OD module provides

covariance analysis methods such as covariance propagation,

projection, and transformation.

Fig. 1(a) shows the highest-level data flow of the DSODS

event prediction process. The user or OD module can make an

event prediction request for the EP module with the spacecraft

ephemeris, ground station list, and/or list of occulting bodies

(i.e., the Moon), as well as relevant settings. To generate the

spacecraft ephemeris, it is possible to utilize the OP module,

but the EP module cannot distinguish whether the spacecraft

ephemeris is generated by the OP module or other tools

such as STK and GMAT, as long as the ephemeris is written

in STK’s ephemeris or CCSDS OEM format. If needed, the EP

module obtains ground station (GS) and/or celestial body (CB)

ephemerides using the OP module. Using the ephemerides

of spacecraft (SC), GS, and/or CB, the EP module locates the

desired events in the time domains, and delivers the event

prediction results to the user or OD module. There are two

possible forms of event prediction results: a text-based event

prediction report and instances of Event Prediction class,

which are discussed in Section 4.

Fig. 1(b) shows the highest-level data flow of the DSODS

orbit determination process. The user can make an orbit

determination request from the OD module with an initial

guess on solve-for parameters (e.g. the initial state vector of

the spacecraft, the spacecraft solar radiation pressure (SRP)

area, and range/Doppler biases), spacecraft, spacecraft

tracking data in CCSDS TDM format, and relevant settings.

Based on the user’s input data, the OD module conducts

orbit determination with a weighted batch least squares

estimation algorithm (Cappellari et al. 1976). Tracking

data includes information on the ground station, DSN

measurement settings for range and Doppler observables,

DSN measurements, and time tags of measurements.

Note that all the range and Doppler observations include

radio signal integration over the time interval, and a time

142https://doi.org/10.5140/JASS.2017.34.2.139

J. Astron. Space Sci. 34(2), 139-151 (2017)

tag represents the measurement time. The OD module

obtains ephemerides of the spacecraft, ground stations, and

celestial bodies using the OP module with the spacecraft,

ground stations, and relevant settings. Then, the OD module

acquires the computed range and Doppler observables

using the DS module with the ephemerides and relevant

settings. The OD module then calculates the residuals

between the computed and observed DSN measurements

so that the OD module updates solve-for parameters to

reduce the weighted least squares of residuals. If solve-

for parameters are converged, the OD module delivers the

orbit determination solution to the user. Otherwise, the

OD module continues updating solve-for parameters until

solve-for parameters converge or the number of iterations

reaches the predefined maximum iteration number. As a

result, the OD module produces a readable report in the

DSODS format. The OD report includes information on

the solve-for parameter solution, the covariance of the OD

solution, measurement residuals, the measurement data

editing history, DSN settings, and orbit propagation settings.

Fig. 1(c) shows the highest-level data flow of the DSODS

tracking data simulation process. The user can make a DSN

measurement data simulation request to the OD module

with the truth data for solve-for parameters (e.g. initial state

vector of spacecraft, spacecraft SRP area, and range/Doppler

biases), spacecraft, ground stations, and relevant settings.

Using the DS and EP modules, the OD module creates a

set of simulated range and/or Doppler measurements, and

saves it in a text file written in the CCSDS TDM format.

Compared to event prediction and orbit determination

processes, the tracking data simulation process includes

the majority of event prediction and orbit determination

processes, except the iterative process. In addition, in the

tracking data simulation process, the DS module does not

produce computed range and Doppler observables but

simulated sequential range and Doppler observables, which

include simulated white noise and user-defined biases.

2.1 CUCL

This subsection explains some important concepts including

time and ephemeris, and how they are handled in DSODS with

the CUCL. Now, the CUCL consists of six important classes

and utility subroutines: epoch time, coordinate system base,

Hermite ephemeris, spacecraft, transponder, and ground

station base. Among them, epoch time, coordinate system

base, and spacecraft are associated with GMAT and compatible

with the GMAT corresponding counterpart classes. The utility

subroutines are not directly addressed here because there

are a number of subroutines in DSODS. Thus, the following

explanation on CUCL focuses on the classes in terms of

information and functionalities.

Fig. 1. Data flow diagrams for: (a) event prediction, (b) orbit determination, and (c) data simulation.

(a) Event Prediction Data Flow

(b) Orbit Determination Data Flow

(c) Data Simulation Data Flow

143 http://janss.kr

Youngkwang Kim et al. Deep Space Orbit Determination Software: Overview

The CUCL was developed to efficiently handle the interfaces

between modules and various input and output data specifica-

tions. The CUCL includes a number of utility subroutines

and six classes used throughout the DSODS. For instance, the

epoch time class of the CUCL supports five time system types,

which are international atomic time (TAI), terrestrial time (TT),

barycentric dynamical time (TDB), coordinated universal time

(UTC), and A1 (U.S. Naval Observatory’s atomic time scale; a

predecessor of TAI), and four time representations (i.e., GMAT

style modified Julian Date, numerical Gregorian, GMAT style

Gregorian string, and CCSDS style Gregorian string). Note

that handling epochs given in various representation types is

important to support general input and output specifications

such as the CCSDS orbit ephemeris message (OEM) format,

which is an international orbit data format standard defined by

CCSDS, and STK’s own ephemeris format.

Time is one of the most fundamental concepts in astrody-

namics, and needs to be handled with discretion. Currently,

the epoch time class contains information on the epoch

time, its time system type (e.g. TAI), and its representation

type, for instance, Gregorian or modified Julian date (MJD).

In addition, epoch time provides functionalities such as

conversions between representation types and calculation

of the elapsed seconds between different epochs. The epoch

time class supports five time system types: TAI, TT, TDB,

UTC, and A1. Inside DSODS, any time moment is defined in

terms of the epoch time t
0
SYS, TAI elapsed seconds ΔtTAI, and

time rate correction (ΔtSYS-ΔtTAI), as follows:

	

 5

addition, in the tracking data simulation process, the DS module does not produce computed range and
Doppler observables but simulated sequential range and Doppler observables, which include simulated white
noise and user-defined biases.

2.1 CUCL

This subsection explains some important concepts including time and ephemeris, and how they are
handled in DSODS with the CUCL. Now, the CUCL consists of six important classes and utility subroutines:
epoch time, coordinate system base, Hermite ephemeris, spacecraft, transponder, and ground station base.
Among them, epoch time, coordinate system base, and spacecraft are associated with GMAT and compatible
with the GMAT corresponding counterpart classes. The utility subroutines are not directly addressed here
because there are a number of subroutines in DSODS. Thus, the following explanation on CUCL focuses on
the classes in terms of information and functionalities.

The CUCL was developed to efficiently handle the interfaces between modules and various input and
output data specifications. The CUCL includes a number of utility subroutines and six classes used
throughout the DSODS. For instance, the epoch time class of the CUCL supports five time system types,
which are international atomic time (TAI), terrestrial time (TT), barycentric dynamical time (TDB),
coordinated universal time (UTC), and A1 (U.S. Naval Observatory’s atomic time scale; a predecessor of
TAI), and four time representations (i.e., GMAT style modified Julian Date, numerical Gregorian, GMAT
style Gregorian string, and CCSDS style Gregorian string). Note that handling epochs given in various
representation types is important to support general input and output specifications such as the CCSDS orbit
ephemeris message (OEM) format, which is an international orbit data format standard defined by CCSDS,
and STK’s own ephemeris format.

Time is one of the most fundamental concepts in astrodynamics, and needs to be handled with
discretion. Currently, the epoch time class contains information on the epoch time, its time system type (e.g.
TAI), and its representation type, for instance, Gregorian or modified Julian date (MJD). In addition, epoch
time provides functionalities such as conversions between representation types and calculation of the elapsed
seconds between different epochs. The epoch time class supports five time system types: TAI, TT, TDB,
UTC, and A1. Inside DSODS, any time moment is defined in terms of the epoch time 𝑡𝑡0SYS, TAI elapsed
seconds 𝛥𝛥𝑡𝑡TAI, and time rate correction (𝛥𝛥𝑡𝑡SYS − 𝛥𝛥𝑡𝑡TAI), as follows:

𝑡𝑡SYS = 𝑡𝑡0SYS + Δ𝑡𝑡TAI + (Δ𝑡𝑡SYS − Δ𝑡𝑡TAI) (1)

where the superscript SYS represents the time system type. Regarding the time rate correction term, the
following holds:

Δ𝑡𝑡UTC = Δ𝑡𝑡TAI = Δ𝑡𝑡TT = Δ𝑡𝑡A1 ≠ Δ𝑡𝑡TDB (2)

Thus, the time rate correction term is not equal to zero only for the TDB time system. Note that one second
in TDB is different from one second of the other time systems due to the general relativistic time dilation
effect (Moyer 2005). The time rate correction for TDB is realized in the DS module for the general
relativistic light propagation in the solar system barycentric space-time reference system. Moreover, the time
difference 𝛥𝛥𝛥𝛥BA between the time values in two different time systems is defined as follows:

𝑡𝑡A = 𝑡𝑡B + Δ𝑡𝑡BA (3)

where A and B are one of any time system supported in DSODS. Both the time rate corrections and time
difference is now handled by GMAT. In the near future, DSODS will replace GMAT-related time
conversion algorithms with its own time conversion algorithms. On the other hand, the epoch time class
supports fours time representations: the GMAT style modified Julian Date, numerical Gregorian, the GMAT
style Gregorian string, and the CCSDS style Gregorian string. Gregorian representation expresses a time
moment by year, month, day, hour, minute, and second. Supporting various time representations is important
for generalizing input and output specifications because each specification uses a different representation.
For instance, TDM, and OEM formats are based on the CCSDS style Gregorian (e.g. 2000-01-

� (1)

where the superscript SYS represents the time system type.

Regarding the time rate correction term, the following holds:

	

 5

addition, in the tracking data simulation process, the DS module does not produce computed range and
Doppler observables but simulated sequential range and Doppler observables, which include simulated white
noise and user-defined biases.

2.1 CUCL

This subsection explains some important concepts including time and ephemeris, and how they are
handled in DSODS with the CUCL. Now, the CUCL consists of six important classes and utility subroutines:
epoch time, coordinate system base, Hermite ephemeris, spacecraft, transponder, and ground station base.
Among them, epoch time, coordinate system base, and spacecraft are associated with GMAT and compatible
with the GMAT corresponding counterpart classes. The utility subroutines are not directly addressed here
because there are a number of subroutines in DSODS. Thus, the following explanation on CUCL focuses on
the classes in terms of information and functionalities.

The CUCL was developed to efficiently handle the interfaces between modules and various input and
output data specifications. The CUCL includes a number of utility subroutines and six classes used
throughout the DSODS. For instance, the epoch time class of the CUCL supports five time system types,
which are international atomic time (TAI), terrestrial time (TT), barycentric dynamical time (TDB),
coordinated universal time (UTC), and A1 (U.S. Naval Observatory’s atomic time scale; a predecessor of
TAI), and four time representations (i.e., GMAT style modified Julian Date, numerical Gregorian, GMAT
style Gregorian string, and CCSDS style Gregorian string). Note that handling epochs given in various
representation types is important to support general input and output specifications such as the CCSDS orbit
ephemeris message (OEM) format, which is an international orbit data format standard defined by CCSDS,
and STK’s own ephemeris format.

Time is one of the most fundamental concepts in astrodynamics, and needs to be handled with
discretion. Currently, the epoch time class contains information on the epoch time, its time system type (e.g.
TAI), and its representation type, for instance, Gregorian or modified Julian date (MJD). In addition, epoch
time provides functionalities such as conversions between representation types and calculation of the elapsed
seconds between different epochs. The epoch time class supports five time system types: TAI, TT, TDB,
UTC, and A1. Inside DSODS, any time moment is defined in terms of the epoch time 𝑡𝑡0SYS, TAI elapsed
seconds 𝛥𝛥𝑡𝑡TAI, and time rate correction (𝛥𝛥𝑡𝑡SYS − 𝛥𝛥𝑡𝑡TAI), as follows:

𝑡𝑡SYS = 𝑡𝑡0SYS + Δ𝑡𝑡TAI + (Δ𝑡𝑡SYS − Δ𝑡𝑡TAI) (1)

where the superscript SYS represents the time system type. Regarding the time rate correction term, the
following holds:

Δ𝑡𝑡UTC = Δ𝑡𝑡TAI = Δ𝑡𝑡TT = Δ𝑡𝑡A1 ≠ Δ𝑡𝑡TDB (2)

Thus, the time rate correction term is not equal to zero only for the TDB time system. Note that one second
in TDB is different from one second of the other time systems due to the general relativistic time dilation
effect (Moyer 2005). The time rate correction for TDB is realized in the DS module for the general
relativistic light propagation in the solar system barycentric space-time reference system. Moreover, the time
difference 𝛥𝛥𝛥𝛥BA between the time values in two different time systems is defined as follows:

𝑡𝑡A = 𝑡𝑡B + Δ𝑡𝑡BA (3)

where A and B are one of any time system supported in DSODS. Both the time rate corrections and time
difference is now handled by GMAT. In the near future, DSODS will replace GMAT-related time
conversion algorithms with its own time conversion algorithms. On the other hand, the epoch time class
supports fours time representations: the GMAT style modified Julian Date, numerical Gregorian, the GMAT
style Gregorian string, and the CCSDS style Gregorian string. Gregorian representation expresses a time
moment by year, month, day, hour, minute, and second. Supporting various time representations is important
for generalizing input and output specifications because each specification uses a different representation.
For instance, TDM, and OEM formats are based on the CCSDS style Gregorian (e.g. 2000-01-

� (2)

Thus, the time rate correction term is not equal to zero

only for the TDB time system. Note that one second in TDB

is different from one second of the other time systems due to

the general relativistic time dilation effect (Moyer 2005). The

time rate correction for TDB is realized in the DS module for

the general relativistic light propagation in the solar system

barycentric space-time reference system. Moreover, the

time difference Δt
B
A between the time values in two different

time systems is defined as follows:

	

 5

addition, in the tracking data simulation process, the DS module does not produce computed range and
Doppler observables but simulated sequential range and Doppler observables, which include simulated white
noise and user-defined biases.

2.1 CUCL

This subsection explains some important concepts including time and ephemeris, and how they are
handled in DSODS with the CUCL. Now, the CUCL consists of six important classes and utility subroutines:
epoch time, coordinate system base, Hermite ephemeris, spacecraft, transponder, and ground station base.
Among them, epoch time, coordinate system base, and spacecraft are associated with GMAT and compatible
with the GMAT corresponding counterpart classes. The utility subroutines are not directly addressed here
because there are a number of subroutines in DSODS. Thus, the following explanation on CUCL focuses on
the classes in terms of information and functionalities.

The CUCL was developed to efficiently handle the interfaces between modules and various input and
output data specifications. The CUCL includes a number of utility subroutines and six classes used
throughout the DSODS. For instance, the epoch time class of the CUCL supports five time system types,
which are international atomic time (TAI), terrestrial time (TT), barycentric dynamical time (TDB),
coordinated universal time (UTC), and A1 (U.S. Naval Observatory’s atomic time scale; a predecessor of
TAI), and four time representations (i.e., GMAT style modified Julian Date, numerical Gregorian, GMAT
style Gregorian string, and CCSDS style Gregorian string). Note that handling epochs given in various
representation types is important to support general input and output specifications such as the CCSDS orbit
ephemeris message (OEM) format, which is an international orbit data format standard defined by CCSDS,
and STK’s own ephemeris format.

Time is one of the most fundamental concepts in astrodynamics, and needs to be handled with
discretion. Currently, the epoch time class contains information on the epoch time, its time system type (e.g.
TAI), and its representation type, for instance, Gregorian or modified Julian date (MJD). In addition, epoch
time provides functionalities such as conversions between representation types and calculation of the elapsed
seconds between different epochs. The epoch time class supports five time system types: TAI, TT, TDB,
UTC, and A1. Inside DSODS, any time moment is defined in terms of the epoch time 𝑡𝑡0SYS, TAI elapsed
seconds 𝛥𝛥𝑡𝑡TAI, and time rate correction (𝛥𝛥𝑡𝑡SYS − 𝛥𝛥𝑡𝑡TAI), as follows:

𝑡𝑡SYS = 𝑡𝑡0SYS + Δ𝑡𝑡TAI + (Δ𝑡𝑡SYS − Δ𝑡𝑡TAI) (1)

where the superscript SYS represents the time system type. Regarding the time rate correction term, the
following holds:

Δ𝑡𝑡UTC = Δ𝑡𝑡TAI = Δ𝑡𝑡TT = Δ𝑡𝑡A1 ≠ Δ𝑡𝑡TDB (2)

Thus, the time rate correction term is not equal to zero only for the TDB time system. Note that one second
in TDB is different from one second of the other time systems due to the general relativistic time dilation
effect (Moyer 2005). The time rate correction for TDB is realized in the DS module for the general
relativistic light propagation in the solar system barycentric space-time reference system. Moreover, the time
difference 𝛥𝛥𝛥𝛥BA between the time values in two different time systems is defined as follows:

𝑡𝑡A = 𝑡𝑡B + Δ𝑡𝑡BA (3)

where A and B are one of any time system supported in DSODS. Both the time rate corrections and time
difference is now handled by GMAT. In the near future, DSODS will replace GMAT-related time
conversion algorithms with its own time conversion algorithms. On the other hand, the epoch time class
supports fours time representations: the GMAT style modified Julian Date, numerical Gregorian, the GMAT
style Gregorian string, and the CCSDS style Gregorian string. Gregorian representation expresses a time
moment by year, month, day, hour, minute, and second. Supporting various time representations is important
for generalizing input and output specifications because each specification uses a different representation.
For instance, TDM, and OEM formats are based on the CCSDS style Gregorian (e.g. 2000-01-

� (3)

where A and B are one of any time system supported in

DSODS. Both the time rate corrections and time difference

is now handled by GMAT. In the near future, DSODS will

replace GMAT-related time conversion algorithms with its

own time conversion algorithms. On the other hand, the

epoch time class supports fours time representations: the

GMAT style modified Julian Date, numerical Gregorian, the

GMAT style Gregorian string, and the CCSDS style Gregorian

string. Gregorian representation expresses a time moment

by year, month, day, hour, minute, and second. Supporting

various time representations is important for generalizing

input and output specifications because each specification

uses a different representation. For instance, TDM, and

OEM formats are based on the CCSDS style Gregorian (e.g.

2000-01-01T12:00:00.000), whereas STK and GMAT time

representations are based on the GMAT style Gregorian (e.g.

01 Jan 2000 12:00:00.000). Additionally, the usual MJD offset

from Julian date (JD) is defined as 2400000.5 but DSODS uses

the GMAT style modified Julian date, which is defined as:

	

 6

01T12:00:00.000), whereas STK and GMAT time representations are based on the GMAT style Gregorian
(e.g. 01 Jan 2000 12:00:00.000). Additionally, the usual MJD offset from Julian date (JD) is defined as
2400000.5 but DSODS uses the GMAT style modified Julian date, which is defined as:

𝑡𝑡MJD = 𝑡𝑡JD − 2430000.0 (4)

where 2430000.0 is the GMAT’s MJD offset from JD. The conversion between MJD and Gregorian
representations can cause numerical noise associated with dividing by 86,400 (a day in seconds). To suppress
such numerical noise, DSODS supports setting the time resolution for conversion. For instance, if the user
set the time resolution to be 10−6, DSODS rounds a second of the Gregorian representation with respect to
six digits to the right of the decimal point. The default time resolution is set as 10−6 in DSODS.

In DSODS, the coordinate system base class allows the user to define various coordinate systems as a
combination of the reference points and axis type. The coordinate system base class is responsible for
reproducing GMAT coordinate systems through the GMAT interface. As a result, the conversions between
different coordinate systems are handled entirely by GMAT. In accordance with GMAT, the coordinate
system base class supports six axis types: J2000 equatorial, J2000 ecliptic, ICRF, object referenced, body
fixed, and body inertial, and supports three types of coordinate system references: celestial point, spacecraft,
and ground station. For celestial points, there are ten supported references: solar system barycenter, Sun,
Mercury, Venus, Earth, Luna, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. Apart from the object
reference axis type, the coordinate system has only one reference point that is the center of the coordinate.
The object reference axis type constructs a local-vertical-local-horizontal (LVLH) axis, where the radial
direction is defined by the vector from the first reference to the second reference, the normal direction is
defined by the angular momentum vector, and the other direction is co-normal to the radial and normal
directions. The center of the coordinate is defined as the second reference point. Therefore, DSODS allows
the user to define a variety of coordinate systems as a combination of the reference points and the axis type.
For more details, see the GMAT mathematical specification document (GMAT 2017).

Inside of DSODS, the Hermite ephemeris class is used to define any ephemeris as a set of polynomial
coefficients to interpolate position and velocity vectors at any moment within the predefined interval by
Hermite interpolation. Hermite interpolation guarantees consistency between position and velocity
interpolations, which means that the derivative of the polynomial interpolating position is equal to the
polynomial interpolating velocity (Zill et al. 2011). Although the concept of ephemeris is originally defined
for a space object such as a celestial body or spacecraft, the Hermite ephemeris class of DSODS supports any
object, including a ground station, with a position and velocity as a function of time within the predefined
interval. The extended concept of ephemeris is used throughout DSODS, and is especially useful for
handling iterative processes, such as root-finding in the EP module and light time equation solving in the DS
module, because these iterative processes requires the position and velocity of an object as continuous curves
rather than a set of discrete points. Currently, the Hermite ephemeris class uses polynomials of the fifth
degree for each coordinate by default, and allows the user to use polynomials ranging from the third to the
seventh degree.

Similar to the coordinate system base class, the spacecraft class of DSODS is responsible for
reproducing GMAT spacecraft through the GMAT interface. The spacecraft class contains information on
the name, epoch time, initial state vector, coordinate system, representation type, drag area and coefficient,
SRP area and reflectivity, and transponder of a spacecraft. It supports three state representation types:
Cartesian, classical Keplerian, and spherical coordinate state representation based on right ascension and
declination. Moreover, a transponder is represented as a class in DSODS, which contains information on the
uplink and downlink bands, turn around ratio, and transponder delay in meters. In the DSN sequential range
observable, transponder delay plays an important role because its magnitude is usually several hundred
meters, e.g., the Lunar Prospector transponder delay was measured as 405 m (Woodburn & Seago 2008).

The ground station base class of the CUCL plays an important role in DSODS. The ground station base
class contains information on the location, range and Doppler biases, range and Doppler noise levels,
antenna related information (such as cut off angle for contact, diameter, antenna offset constant, and mount
type), and mean meteorological models (ODTBX 2017) for DSN complexes. Also, the ground station base
class provides the methods for conversions between Cartesian and geodetic spherical coordinates, antenna
offset correction calculations, and media correction calculations based on mean meteorological models.

� (4)

where 2430000.0 is the GMAT’s MJD offset from JD. The

conversion between MJD and Gregorian representations can

cause numerical noise associated with dividing by 86,400 (a

day in seconds). To suppress such numerical noise, DSODS

supports setting the time resolution for conversion. For

instance, if the user set the time resolution to be 10-6, DSODS

rounds a second of the Gregorian representation with respect

to six digits to the right of the decimal point. The default time

resolution is set as 10-6 in DSODS.

In DSODS, the coordinate system base class allows the user

to define various coordinate systems as a combination of the

reference points and axis type. The coordinate system base

class is responsible for reproducing GMAT coordinate systems

through the GMAT interface. As a result, the conversions

between different coordinate systems are handled entirely by

GMAT. In accordance with GMAT, the coordinate system base

class supports six axis types: J2000 equatorial, J2000 ecliptic,

ICRF, object referenced, body fixed, and body inertial, and

supports three types of coordinate system references: celestial

point, spacecraft, and ground station. For celestial points,

there are ten supported references: solar system barycenter,

Sun, Mercury, Venus, Earth, Luna, Mars, Jupiter, Saturn,

Uranus, Neptune, and Pluto. Apart from the object reference

axis type, the coordinate system has only one reference point

that is the center of the coordinate. The object reference

axis type constructs a local-vertical-local-horizontal (LVLH)

axis, where the radial direction is defined by the vector

from the first reference to the second reference, the normal

direction is defined by the angular momentum vector, and

the other direction is co-normal to the radial and normal

144https://doi.org/10.5140/JASS.2017.34.2.139

J. Astron. Space Sci. 34(2), 139-151 (2017)

directions. The center of the coordinate is defined as the

second reference point. Therefore, DSODS allows the user to

define a variety of coordinate systems as a combination of the

reference points and the axis type. For more details, see the

GMAT mathematical specification document (GMAT 2017).

Inside of DSODS, the Hermite ephemeris class is used

to define any ephemeris as a set of polynomial coefficients

to interpolate position and velocity vectors at any moment

within the predefined interval by Hermite interpolation.

Hermite interpolation guarantees consistency between

position and velocity interpolations, which means that the

derivative of the polynomial interpolating position is equal

to the polynomial interpolating velocity (Zill et al. 2011).

Although the concept of ephemeris is originally defined

for a space object such as a celestial body or spacecraft, the

Hermite ephemeris class of DSODS supports any object,

including a ground station, with a position and velocity as a

function of time within the predefined interval. The extended

concept of ephemeris is used throughout DSODS, and is

especially useful for handling iterative processes, such as

root-finding in the EP module and light time equation solving

in the DS module, because these iterative processes requires

the position and velocity of an object as continuous curves

rather than a set of discrete points. Currently, the Hermite

ephemeris class uses polynomials of the fifth degree for each

coordinate by default, and allows the user to use polynomials

ranging from the third to the seventh degree.

Similar to the coordinate system base class, the spacecraft

class of DSODS is responsible for reproducing GMAT spacecraft

through the GMAT interface. The spacecraft class contains

information on the name, epoch time, initial state vector,

coordinate system, representation type, drag area and coefficient,

SRP area and reflectivity, and transponder of a spacecraft. It

supports three state representation types: Cartesian, classical

Keplerian, and spherical coordinate state representation based

on right ascension and declination. Moreover, a transponder is

represented as a class in DSODS, which contains information

on the uplink and downlink bands, turn around ratio, and

transponder delay in meters. In the DSN sequential range

observable, transponder delay plays an important role because

its magnitude is usually several hundred meters, e.g., the

Lunar Prospector transponder delay was measured as 405 m

(Woodburn & Seago 2008).

The ground station base class of the CUCL plays an

important role in DSODS. The ground station base class

contains information on the location, range and Doppler biases,

range and Doppler noise levels, antenna related information

(such as cut off angle for contact, diameter, antenna offset

constant, and mount type), and mean meteorological models

(ODTBX 2017) for DSN complexes. Also, the ground station

base class provides the methods for conversions between

Cartesian and geodetic spherical coordinates, antenna offset

correction calculations, and media correction calculations

based on mean meteorological models.

3. OP MODULE

The OP module is responsible for fundamental astro-

dynamics-related operations: orbit propagation, time and

coordinate system conversions, and creation of spacecraft

and celestial body ephemerides. Currently, the OP module

utilizes the GMAT as a third-party software component,

and the GMAT is in charge of handling these fundamental

operations. For mathematical details, see the GMAT

mathematical specification document (GMAT 2017).

Although using the GMAT has significantly shortened the

overall development period of DSODS, the capability and

application environment of the OP module is limited by

the GMAT. For instance, currently, the GMAT supports only

gravitational potential data with a degree and order equal

to or less than 165. In addition, the user needs a MATLAB

32-bit version higher than 2013b to run DSODS under the

Microsoft Windows OS environment. However, the OP

module includes all the GMAT dependent codes so that the

other modules cannot distinguish whether the OP module

is using the GMAT or not. Such GMAT dependency isolation

was intended to make the GMAT replaceable with other

third-party software in the future.

The OP module consists of module-level methods, the

MATLAB/GMAT interface, and public classes. Table 1

explains the module-level methods provided by the OP

module. These module-level methods are used by the

other modules throughout DSODS. Table 2 introduces the

components of the MATLAB/GMAT interface with brief

explanations. There are six components: script interface,

Table 1. OP module method list

Method Name Role
Time Conversion Utility To convert time systems between UTC, TAI, TT, A1, and TDB

Coordinate Conversion Utility To convert coordinate systems between any types supported in DSODS
Propagate SC To propagate spacecraft trajectory with gravitational potential, air-drag, SRP, third body, and relativistic effects

Get GS State Array To convert ECEF coordinates to ECI coordinates based on IAU-1976 and FK5 theory with 1980 update to nutation
Get CB State Array To calculate celestial bodies’ state vectors based on JPL’s DE421 ephemeris data

145 http://janss.kr

Youngkwang Kim et al. Deep Space Orbit Determination Software: Overview

class interface, MEX interface, GMAT interface, GMAT base

library (libGmatBase.dll), and GMAT data files. Note that

these components are either binaries or classes written

in MATLAB or C++. Finally, there are four public classes

accessible by any module: the air-drag model, the gravity

potential model, the force model, and the propagator. These

classes are used to deliver orbit propagation options, and

are compatible with but not dependent on the GMAT. Using

these public classes, the script interface class writes a GMAT

script that gives an order to the GMAT regarding how to

propagate the spacecraft trajectory.

Fig. 2 shows the two data flow diagrams of the OP module.

Fig. 2(a) is the data flow diagram for orbit propagation,

which shows that the class interface cannot directly access

the GMAT base library (libGmatBase.dll) but contains the

MEX interface, which can communicate with the GMAT

base library. Note that for orbit propagation, most of the

data communication is indirect and based on text file access,

except for the name of the script, which is a string type data,

and is directly delivered to the GMAT base library through

the MEX interface. Moreover, Fig. 2(b) presents the data flows

of the other operations such as time and coordinate system

conversions and ephemeris generations of ground stations

and celestial bodies. The specific data contents are omitted

in the data flow diagram because they are dependent on

the operation (or, method) being applied. Note that, in this

case, all data communication is direct and based on memory

access so that type casting between MATLAB and GMAT

data types is required. The GMAT uses an internal Rvector

array type while the MEX interface uses its own mxArray

type, where non-standard C++ type identifiers are denoted in

italics. Thus, the MEX interface converts Rvector to mxArray

and vice versa using the standard C++ type array.

4. EP MODULE

The EP module predicts astrodynamics-related events,

and delivers information on the timing and type of event

to the user or the OD module to aid the mission planning

and design process. The highest-level data flow diagram

is provided in Fig. 1(a). The EP module addresses various

types of events such as orbital status, eclipses, ground station

visibility, and solar communication outages. However, the

current implementation of the EP module does not consider

special relativistic light time delay and stellar aberration. The

EP module was developed to support the KPLO and, in the

Earth-Luna system, perturbation effects usually cause errors

of less than a few seconds. Future extension of the EP module

may include these perturbation effects for applications to

other deep space missions beyond the Earth-Luna system.

The EP module consists of event functions, an event

Table 2. MATLAB/GMAT interface component list

Name Type Explanation

Script Interface MATLAB class
Script interface is responsible for generating GMAT script for orbit propagation using Force Model,

Propagator, and Spacecraft classes.
Class Interface MATLAB class Class interface owns MEX interface. Its role is to interface MEX interface and OP module methods.
MEX Interface 32-bit MEX MEX interface utilizes GMAT interface. Its role is to deliver data from OP module to GMAT and vice versa.

GMAT Interface C++ class
GMAT interface is a part of MEX interface, and knows the details of GMAT classes. Its role is to obtain the

desired data using GMAT.
libGmatBase 32-bit DLL libGmatBase is the GMAT base library. Its role is to conduct fundamental astrodynamics-related operations.

GMAT Data text and binary
The various text and binary data included in GMAT. They are required to conduct fundamental

astrodynamics-related operations.

Fig. 2. OP module data flow diagram: (a) type A for orbit propagation and (b) type B for other operations.

(a) OP Module Data Flow Type A (b) OP Module Data Flow Type B

146https://doi.org/10.5140/JASS.2017.34.2.139

J. Astron. Space Sci. 34(2), 139-151 (2017)

location algorithm, a mesh-refinement algorithm, and

public classes. The event functions are defined for different

types of event in that when an event occurs, the event

function value is equal to zero. For instance, Eq. (8) is an

event function for solar communication outage. As a result,

finding roots of the event function is equivalent to locating

the events. The event location algorithm finds the location

and type of events by solving the root-finding problem with

the data provided (i.e., event function and ephemerides

of spacecraft, ground stations, and celestial bodies). To

find the roots of the event function, the event location

algorithm utilizes the cubic Hermite spline and analytical

roots of the cubic equation. The mesh-refinement algorithm

estimates the quality of the event prediction solution and

updates the mesh-points used in the root-finding so that the

quality of the event prediction solution satisfies the user-

defined tolerance. There are two public classes in the EP

module: point-type event prediction and interval-type event

prediction classes. These classes contain information on the

location and type of events obtained by the event location

algorithm.

4.1 Functionality Requirements

The current list of event prediction functionality require-

ments for the KPLO is presented in Table 3 (Song et al. 2016).

Each functionality code (i.e., EPF-1) indicates a category of

the functionality requirement. If necessary, a functionality

code can be divided into multiple functionality sub-codes

(i.e., EPF-1.1, EPF-1.2, and EPF-1.3) because an event may

be determined by multiple geometrical configurations. For

instance, ground station visibility is acquired only when the

elevation of the spacecraft is higher than the cut-off angle

of the ground station and the signal is not occulted by any

celestial body. Although functionality codes appear fairly

fixed, new functionality sub-codes can be added in the

future. For instance, EPF-3, which is an orbital status event,

is expected to have more minor functionality codes than at

present because the KPLO’s detailed mission requirements

are still to be determined.

4.2 Event Location Process

The mathematical details of the event location process

are provided here. The mesh-refinement algorithm controls

the outer loop of the event prediction process while the

event location algorithm controls the inner loop. The mesh-

refinement algorithm controls the overall quality of the event

prediction solution. The event location algorithm consists of

two components: the cubic Hermite spline and the analytical

root-finding algorithm for cubic equations. The approach

taken here has merits in that it does not require any iterative

process in root-finding. The cubic Hermite spline utilizes

the first derivatives, and it has a better accuracy than the

(natural) cubic spline, which does not use any derivatives. An

error control scheme (for instance, mesh refinement) is not

applied at the event location algorithm level but at the mesh-

refinement level.

The flow chart for the event prediction process is presented

in Fig. 3. The user provides the spacecraft ephemeris and

initial mesh configuration for the time domain. With the

given mesh points, the OP module is asked to produce the

ephemerides of celestial bodies and ground stations. Based

on this, the event function subroutine provides event function

values and its first derivatives at mesh points. For each mesh

interval, the cubic Hermite spline subroutine defines a third-

degree polynomial specified for the Hermite form based

on event function values and its first derivatives at the end

points of the interval. For each cubic function defined in

an interval, the analytical root-finding subroutine for cubic

polynomials analytically determines all inside roots. By

repeating root-finding for all intervals, the event location is

completed. The mesh-refinement algorithm increases the

time sampling rate by ten times, and compares the relative

errors of the roots between two different mesh configurations.

The mesh-refinement algorithm continues increasing the

Table 3. Event prediction functionality requirements for KPLO

Functionality Code Functionality Sub-Code Description
EPF-1 Predict eclipse by major planetary bodies in Earth, Luna, and trans-Lunar orbits

EPF-1.1 Predict umbra Entry and Exit by ellipsoidal body in Earth, Luna, and trans-Lunar orbits
EPF-1.2 Predict penumbra Entry and Exit by ellipsoidal body in Earth, Luna, and trans-Lunar orbits
EPF-1.3 Predict antumbra entry and exit by ellipsoidal body in Earth, Luna, and trans-Lunar orbits

EPF-2 Predict solar outage in Earth, Luna, and trans-Lunar orbits
EPF-3 Predict orbital status in Earth, Luna, and trans-Lunar orbits

EPF-3.1 Predict apsis passage in Earth, Luna, and trans-Lunar orbits
EPF-3.2 Predict node crossing in Earth, Luna, and trans-Lunar orbits

EPF-4 Predict ground station visibility in Earth, Luna, and trans-Lunar orbits
EPF-4.1 Predict elevation angle cut-off in Earth, Luna, and trans-Lunar orbits
EPF-4.2 Predict communication interruption by celestial bodies in Luna orbit

147 http://janss.kr

Youngkwang Kim et al. Deep Space Orbit Determination Software: Overview

time sampling rate until all the relative errors satisfy the user-

defined tolerance or the iteration counts reaches the user-

defined maximum iteration constraint. As the end product,

the locations of the events and the event conditions (e.g.,

whether it is the beginning or end of the event) are delivered

to the user as the point-type event prediction or interval-type

event prediction class.

The cubic Hermite spline defines a third-degree polyno-

mial in Hermite form using the function value and its first

derivative at the end points of an interval (Zill et al. 2011):

� (5)

where ĝn,n+1
(t) is the third-degree polynomial in Hermite form

and tn is n-th mesh point. The coefficients, presented in Eq. (5),

are given as follows:

	

 10

appear fairly fixed, new functionality sub-codes can be added in the future. For instance, EPF-3, which is an
orbital status event, is expected to have more minor functionality codes than at present because the KPLO’s
detailed mission requirements are still to be determined.

4.2 Event Location Process

The mathematical details of the event location process are provided here. The mesh-refinement

algorithm controls the outer loop of the event prediction process while the event location algorithm controls
the inner loop. The mesh-refinement algorithm controls the overall quality of the event prediction solution.
The event location algorithm consists of two components: the cubic Hermite spline and the analytical root-
finding algorithm for cubic equations. The approach taken here has merits in that it does not require any
iterative process in root-finding. The cubic Hermite spline utilizes the first derivatives, and it has a better
accuracy than the (natural) cubic spline, which does not use any derivatives. An error control scheme (for
instance, mesh refinement) is not applied at the event location algorithm level but at the mesh-refinement
level.

The flow chart for the event prediction process is presented in Fig. 3. The user provides the spacecraft
ephemeris and initial mesh configuration for the time domain. With the given mesh points, the OP module is
asked to produce the ephemerides of celestial bodies and ground stations. Based on this, the event function
subroutine provides event function values and its first derivatives at mesh points. For each mesh interval, the
cubic Hermite spline subroutine defines a third-degree polynomial specified for the Hermite form based on
event function values and its first derivatives at the end points of the interval. For each cubic function
defined in an interval, the analytical root-finding subroutine for cubic polynomials analytically determines
all inside roots. By repeating root-finding for all intervals, the event location is completed. The mesh-
refinement algorithm increases the time sampling rate by ten times, and compares the relative errors of the
roots between two different mesh configurations. The mesh-refinement algorithm continues increasing the
time sampling rate until all the relative errors satisfy the user-defined tolerance or the iteration counts
reaches the user-defined maximum iteration constraint. As the end product, the locations of the events and
the event conditions (e.g., whether it is the beginning or end of the event) are delivered to the user as the
point-type event prediction or interval-type event prediction class.

The cubic Hermite spline defines a third-degree polynomial in Hermite form using the function value
and its first derivative at the end points of an interval (Zill et al. 2011):

𝑔̂𝑔𝑛𝑛,𝑛𝑛+1(𝑡𝑡) = 𝑎𝑎3(𝑡𝑡 − 𝑡𝑡𝑛𝑛)3 + 𝑎𝑎2(𝑡𝑡 − 𝑡𝑡𝑛𝑛)2 + 𝑎𝑎1(𝑡𝑡 − 𝑡𝑡𝑛𝑛) + 𝑎𝑎0, 𝑡𝑡𝑛𝑛 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑛𝑛+1 (5)

where 𝑔𝑔𝑛𝑛,𝑛𝑛+1(𝑡𝑡) is the third-degree polynomial in Hermite form and 𝑡𝑡𝑛𝑛 is 𝑛𝑛 -th mesh point. The
coefficients, presented in Eq. (5), are given as follows:

[
𝑎𝑎0
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
] = [

1 0 0 0
0 1 0 0
1 ℎ ℎ2 ℎ3
0 1 2ℎ 3ℎ2

] [

𝑔𝑔𝑛𝑛
𝑔̇𝑔𝑛𝑛
𝑔𝑔𝑛𝑛+1
𝑔̇𝑔𝑛𝑛+1

]
(6)

where ℎ = 𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛, 𝑔𝑔𝑛𝑛 = 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝐗𝐗(𝑡𝑡𝑛𝑛)) and 𝑔̇𝑔𝑛𝑛 = 𝑔̇𝑔(𝑡𝑡𝑛𝑛, 𝐗𝐗(𝑡𝑡𝑛𝑛)). Compared to the natural cubic spline,
the cubic Hermite spline generally achieves a better interpolation accuracy using the first derivatives when
constructing the cubic equation in an interval. The absolute accuracy, as opposed to the relative accuracy, of
the cubic Hermite spline is affected by both the event function and mesh point configuration.

Although the analytical expressions of the roots of cubic equations are elementary, they are not
presented here due to their complexity. Experience using the cubic Hermite spline and analytical roots
indicates that even for real roots, the analytical roots obtained in the complex space can contain numerical
noise in the complex component. They seem to be affected by the cubic Hermite spline and the MATLAB
built-in algorithm for calculating the cubic roots in the complex space. However, for a typical mesh interval
of 60 sec, the numerical noise in the complex component is less than 10−7√−1, which is infinitesimal with
respect to event prediction for real mission applications. Thus, the EP module ignores numerical noise in the

� (6)

where h = tn+1
-tn, gn = g(tn, X(tn)) and ġn = ġ(tn, X(tn)). Compared

to the natural cubic spline, the cubic Hermite spline generally

achieves a better interpolation accuracy using the first

derivatives when constructing the cubic equation in an

interval. The absolute accuracy, as opposed to the relative

accuracy, of the cubic Hermite spline is affected by both the

event function and mesh point configuration.

Although the analytical expressions of the roots of cubic

equations are elementary, they are not presented here due

to their complexity. Experience using the cubic Hermite

spline and analytical roots indicates that even for real roots,

the analytical roots obtained in the complex space can

contain numerical noise in the complex component. They

seem to be affected by the cubic Hermite spline and the

MATLAB built-in algorithm for calculating the cubic roots

in the complex space. However, for a typical mesh interval

of 60 sec, the numerical noise in the complex component

is less than 10-7√
_
-1, which is infinitesimal with respect to

event prediction for real mission applications. Thus, the EP

module ignores numerical noise in the complex component

of less than 10-7√
_
-1 to effectively determine the real roots.

4.3 Example: Solar Outage Prediction

This subsection evaluates event prediction capability using

a solar outage (or, solar interference) prediction example.

Solar outage is a phenomenon whereby radio signals from

a spacecraft are obscured by solar radiation. To prevent

unexpected communication problems, it is necessary to

predict the timing and duration of solar outage events for the

entire mission duration. Note that the explanations for the

example are rather brief because the objective here is not to

justify the approach taken in the EP module but to give an

idea how the EP module solves event prediction problems.

Here, a solar outage prediction simulation result is presented

for a lunar orbiter. The outage angle defines when the outage

occurs. If the angular separation between the spacecraft and the

Sun is less than the outage angle, the signals from the spacecraft

Fig. 3. Data flow chart for the event location process.

148https://doi.org/10.5140/JASS.2017.34.2.139

J. Astron. Space Sci. 34(2), 139-151 (2017)

are expected to be obscured by solar radiation. An empirical

approximation formula for the outage angle θ
SI

 is adopted to

predict solar outage, as follows (Vankka & Kestilä 2014):

	

 11

complex component of less than 10−7√−1 to effectively determine the real roots.

Fig. 4. Event prediction results: (upper left and right figures) showing the spacecraft relative

trajectory on the celestial sphere on different scales, and (lower left and right figures) the event
function values on difference scales.

4.3 Example: Solar Outage Prediction

This subsection evaluates event prediction capability using a solar outage (or, solar interference)
prediction example. Solar outage is a phenomenon whereby radio signals from a spacecraft are obscured by
solar radiation. To prevent unexpected communication problems, it is necessary to predict the timing and
duration of solar outage events for the entire mission duration. Note that the explanations for the example are
rather brief because the objective here is not to justify the approach taken in the EP module but to give an
idea how the EP module solves event prediction problems.

Here, a solar outage prediction simulation result is presented for a lunar orbiter. The outage angle
defines when the outage occurs. If the angular separation between the spacecraft and the Sun is less than the
outage angle, the signals from the spacecraft are expected to be obscured by solar radiation. An empirical
approximation formula for the outage angle 𝜃𝜃SI is adopted to predict solar outage, as follows (Vankka &
Kestill 2014):

𝜃𝜃SI = 6√𝐵𝐵𝐵𝐵

𝐹𝐹D𝐷𝐷𝐴𝐴
+ 𝜃𝜃Sun in degree (7)

where 𝜃𝜃Sun = 0.25° is the apparent angular radius of the Sun, 𝐵𝐵𝐵𝐵 is the antenna beam width in decibels,
𝐹𝐹D is the downlink frequency in GHz, and 𝐷𝐷𝐴𝐴 is the antenna diameter in meters. Note that, typically,
𝐵𝐵𝐵𝐵~3 dB is assumed so that 6√𝐵𝐵𝐵𝐵 ≅ 10.4. Using the hour angle 𝛼𝛼 and the altitude angle 𝛿𝛿 measured
at the ground station, an event function for the solar outage can be defined as follows:

𝑔𝑔SI(𝑡𝑡, 𝐗𝐗) = cos(𝜃𝜃SI) − cos(Δ𝛼𝛼) cos(Δ𝛿𝛿) (8)

� (7)

where θ
Sun

 = 0.25° is the apparent angular radius of the

Sun, BW is the antenna beam width in decibels, F
D

 is the

downlink frequency in GHz, and DA is the antenna diameter

in meters. Note that, typically, BW~3 dB is assumed so that

6√
_
BW ≅ 10.4. Using the hour angle α and the altitude angle

δ measured at the ground station, an event function for the

solar outage can be defined as follows:

	

 11

complex component of less than 10−7√−1 to effectively determine the real roots.

Fig. 4. Event prediction results: (upper left and right figures) showing the spacecraft relative

trajectory on the celestial sphere on different scales, and (lower left and right figures) the event
function values on difference scales.

4.3 Example: Solar Outage Prediction

This subsection evaluates event prediction capability using a solar outage (or, solar interference)
prediction example. Solar outage is a phenomenon whereby radio signals from a spacecraft are obscured by
solar radiation. To prevent unexpected communication problems, it is necessary to predict the timing and
duration of solar outage events for the entire mission duration. Note that the explanations for the example are
rather brief because the objective here is not to justify the approach taken in the EP module but to give an
idea how the EP module solves event prediction problems.

Here, a solar outage prediction simulation result is presented for a lunar orbiter. The outage angle
defines when the outage occurs. If the angular separation between the spacecraft and the Sun is less than the
outage angle, the signals from the spacecraft are expected to be obscured by solar radiation. An empirical
approximation formula for the outage angle 𝜃𝜃SI is adopted to predict solar outage, as follows (Vankka &
Kestill 2014):

𝜃𝜃SI = 6√𝐵𝐵𝐵𝐵

𝐹𝐹D𝐷𝐷𝐴𝐴
+ 𝜃𝜃Sun in degree (7)

where 𝜃𝜃Sun = 0.25° is the apparent angular radius of the Sun, 𝐵𝐵𝐵𝐵 is the antenna beam width in decibels,
𝐹𝐹D is the downlink frequency in GHz, and 𝐷𝐷𝐴𝐴 is the antenna diameter in meters. Note that, typically,
𝐵𝐵𝐵𝐵~3 dB is assumed so that 6√𝐵𝐵𝐵𝐵 ≅ 10.4. Using the hour angle 𝛼𝛼 and the altitude angle 𝛿𝛿 measured
at the ground station, an event function for the solar outage can be defined as follows:

𝑔𝑔SI(𝑡𝑡, 𝐗𝐗) = cos(𝜃𝜃SI) − cos(Δ𝛼𝛼) cos(Δ𝛿𝛿) (8)

� (8)

where Δα = α⊙-α
SC

, Δδ = δ⊙-δ
SC

, and the subscripts ⊙ and SC

represent the Sun and the spacecraft, respectively. From Eq. (8),

the solar outage is expected to occur when g
SI

(t, X) ≤ 0.

Therefore, when g
SI

(t, X) = 0, the sign of g ̇
SI

(t, X) determines

whether it is the beginning or end of the solar outage.

In the simulation, DSODS predicts the solar communi-

cation outage of a lunar orbiter observed by a nominal

Daejeon station (36.38°N, 127.35°E, altitude = 102 m). This

simulation begins at TAI 01 Sep 2035 10:00:00, and ends

23 hr later. The current simulation of solar outage is based

on the total lunar eclipse, which will be observable by the

Daejeon station at 02 Sep 2035 because, in usual conditions,

solar outages are rare for lunar orbiters, and also a lunar

orbiter can experience a solar outage when a solar eclipse

is observable by the ground station. In this simulation, θ
SI

 ≅
0.35° is applied by setting BW = 3.4 dB, F

D
 = 11.95 GHz, and

DA = 9 m. The upper left and right figures in Fig. 4 present

the spacecraft relative trajectory on the local celestial sphere

of the Daejeon station with respect to the apparent Sun. The

solar outage occurs when the spacecraft is located inside of

the outage sphere. According to the figures, the solar outage

occurs twice during the simulation. The lower left figure in

Fig. 4 presents the solar outage event function for the entire

duration, and the lower right figure in Fig. 4 presents this

event function for 14-16 hr, where the solar outage occurs

twice. These parts of Fig. 4 indicate that DSODS succeeded

in locating all four real roots in the solar outage event

function.

4.4 Validation and Verification Tests

To validate and verify DSODS’s event prediction capabil-

Fig. 4. Event prediction results: (upper left and right figures) showing the spacecraft relative trajectory on the celestial
sphere on different scales, and (lower left and right figures) the event function values on difference scales.

149 http://janss.kr

Youngkwang Kim et al. Deep Space Orbit Determination Software: Overview

ities, eleven test cases were implemented according to

the functionality requirements presented in Table 3, and

corresponding test results are presented in Table 4. When

DSODS was executed for event prediction under a typical

desktop environment, each test case took up to a few

tens of seconds. For most test cases, external truth data

were provided by various sources including GMAT, STK,

or SPICE, whose event prediction capabilities have been

proved through a number of real mission applications.

Also, for most functionality codes, there were at least two

tests simulated in Earth and Luna orbits, except EPF-

2, which relates to solar outage. No tests on trans-lunar

orbits were included in the test cases because a trans-lunar

orbit is essentially an Earth orbit in terms of its dynamic

characteristics.

For the tests on EPF-1, which relates to an eclipse by an

ellipsoidal body, there were three test cases simulated for

Earth, Luna, and Mars because Mars is a more oblate body

than Earth so a Mars orbit is a better testbed to check the

effects of an ellipsoidal body. In addition, antumbra and

umbra are mutually exclusive, while umbra is a more common

event than antumbra. Thus, a carefully designed simulation

was conducted to generate and test Luna antumbra prediction

using an annular solar eclipse, which will be observed by

ground observers on 26 Jan 2028 (GSFC 2017).

The test problem setting on the functionality code EPF-2

was different from the other cases in two aspects: first, only

tests in Earth orbits were solved; and second, the truth data

were produced by a web calculator (Cromack Industries

Inc. 2017) rather than flight-proven software such as SPICE

or STK. The two differences arose because solar outages

regularly occur for geostationary satellites, and most analyses

were focused on satellites in geostationary orbits. As a result,

the test cases on EFP-2 included two tests for C and Ku bands

to test the dependency on the uplink frequency (see Eqs. (5)-

(6)) instead of central bodies and orbits. It is suggested that

the tests on solar outage prediction were less robust than the

other functionality codes. However, DSODS’s responsibility

on solar outage prediction is limited to provide only an

approximate geometrical estimation on solar outage rather

than an accurate communication quality prediction, which

requires radio engineering-based analysis on spacecraft

and ground stations with a number of parameters (Vankka

& Kestilä 2014). Therefore, applying less robust tests for

solar outage prediction can be justified by limiting DSODS’s

responsibility to geometrical prediction rather than radio

engineering-based communication quality prediction.

The KPLO does not yet have solid performance requirements

on event prediction capabilities; therefore, the current

verification results are preliminary and not confirmed. However,

as shown in Table 4, most test cases showed a maximum error

in the range of 10-2 sec compared to the truth data obtained by

other software packages. DSODS’s maximum error level agrees

with the differences in the event predictions made by distinct

software packages like STK, GMAT, and SPICE. For instance, the

difference between Earth eclipse predictions made by SPICE

Table 4. Event Prediction Validation and Verification Result Summary

Test Cases Related Code Central Body Time Span Possible Event Types
Number of Events

Per Test
Truth Data
Generator

Max Error
(sec)

Eclipse
EPF-1.1
EPF-1.2
EPF-1.3

Earth 4 hr

Earth Penumbra
Earth Umbra

Luna Penumbra
Luna Antumbra

13 SPICE 6.75E-3

Eclipse
EPF-1.1
EPF-1.2

Luna 12 hr
Luna Penumbra

Luna Umbra
15 SPICE 1.35E-3

Eclipse
EPF-1.1
EPF-1.2

Mars 12,000 sec
Mars Penumbra

Mars Umbra
5 SPICE 2.54E-2

Solar Outage EPF-2 Earth 4 day
Solar Outage

in C band
3

Cromack’s
Calculator

9.53

Solar Outage EPF-2 Earth 4 day
Solar Outage

in Ku band
3

Cromack’s
Calculator

8.28

Apsis Passage EPF-3.1 Earth 1 day
Apogee Passage
Perigee Passage

27 GMAT 2.52E-4

Apsis Passage EPF-3.1 Luna 1 day
Aposelene Passage

Periselene
 Passage

19 GMAT 2.73E-4

Node Crossing EPF-3.2 Earth 1 day
Ascending Node Crossing

Descending Node Crossing
26 GMAT 6.16E-6

Node Crossing EPF-3.2 Luna 1 day
Ascending Node Crossing

Descending Node Crossing
19 GMAT 4.05E-4

GS Visibility EPF-4.1 Earth 1 day Elevation Cut-Off 6 STK 3.10E-2

GS Visibility
EPF-4.1
EPF-4.2

Luna 2 day
Elevation Cut-Off
Luna Occultation

10
STK,

GMAT
2.57E-2

150https://doi.org/10.5140/JASS.2017.34.2.139

J. Astron. Space Sci. 34(2), 139-151 (2017)

and STK are on the sub-second level. Therefore, considering

that the responsibility of the EP module is to aid the mission

planning and design process, a maximum error level of 10-2 sec

is thought to be sufficient to satisfy KPLO’s event prediction

capability requirements. Moreover, the event prediction results

on solar outages are different from those of a web calculator

by less than ten seconds. To achieve the best matches, the

following parameter values are used: θ
Sun

 = 0.5°, BW = 2.5

dB, F
D,C-band

 = 4.0 GHz, and F
D,Ku-band

 = 12.0 GHz. Note that it is

possible to reduce the differences between DSODS solar outage

prediction and the external data by tuning related parameters.

However, it does not seem critical because the responsibility of

DSODS is to provide an approximate geometrical estimation

on the occurrence of solar outages rather than an accurate link

margin design and analysis.

5. SUMMARY AND CONCLUSIONS

DSODS has been developed to support the KPLO mission,

and its development objective is to provide the following

functionalities: orbit determination with DSN measurement

models using the batch least squares estimation; DSN

tracking data simulation; and event prediction to aid

mission planning and design. To achieve the development

objective, DSODS consists of one library and four modules:

CUCL, OP, OD, DS, and EP, and uses the MATLAB object-

oriented programming approach. The module-level data flow

diagrams, presented in Section 2, explain how the modules

interact with each other to perform orbit determination,

measurement data simulation, and event prediction. To

address some key concepts commonly used by all modules,

the CUCL includes epoch time, coordinate system base,

spacecraft, ground station base, and Hermite ephemeris

classes. These classes are used in modular level interfaces,

and play an important role in supporting various input and

output interface specifications. Details of these classes are

explained in Section 2.

To save time and effort on the development period, DSODS

utilizes the GMAT as a third-party software for fundamental

astrodynamics-related operations such as time and coordinate

system conversions and high-fidelity orbit propagation in

deep space. Although utilizing the GMAT affects the execution

environment and limits the applicability of DSODS, all

dependence on the GMAT is isolated in the OP module so that

the GMAT can be replaced with other third-party software, if

necessary.

Regarding the validation and verification of DSODS’s event

prediction capabilities, eleven test cases were implemented to

cover all functionality requirements. Although the KPLO does

not yet have solid performance requirements, the achieved

accuracy level of event prediction seems to be sufficient

to support the KPLO for mission design and planning. As

presented in Section 4, the event prediction results on most

test cases showed a maximum error in the range of 10-2 sec,

compared to the flight-proven mission analysis software

packages such as GMAT, STK, and SPICE. Moreover, sub-

second level differences in event predictions can be observed

between them. Less accurate event prediction results were

only obtained for solar outage prediction, with errors less

than 10 sec obtained due to the uncertainty of related

parameters in the simulation. However, such errors in solar

outage prediction are not thought critical for real mission

applications because DSODS is responsible for providing

an approximate geometrical estimation of the occurrence of

solar outages rather than an accurate link margin design and

analysis on solar interference, which requires detailed radio

engineering analyses.

ACKNOWLEDGMENTS

This work was supported by the National Research Founda-

tion of Korea through the Space Core Technology Development

Program funded by the Ministry of Science, ICT & Future

Planning (NRF-2014M1A3A3A03034588).

REFERENCES

Cappellari JO, Velez CE, Fuchs AJ, Mathematical theory of the

Goddard trajectory determination system, NASA Goddard

Space Flight Center, NASA-TM-X-71106 (1976).

Cromack Industries Inc., Satellite - Sun Outage Calculator

[Internet], cited 2017 May 29, available from: http://www.

cromack.com/satsun.html

D’Ortenzio MV, Bresina JL, Crocker AR, Elphic RC, Galal KF, et

al., Operating LADEE: mission architecture, challenges,

anomalies, and successes, in 2015 IEEE Aerospace

Conference, Big Sky, MT, 7-14 Mar 2015.

GMAT, GMAT Mathematical Specification Document [Internet],

2017 May 29, available from: https://gmat.gsfc.nasa.gov/

docs/GMATMathSpec.pdf

GSFC, Solar Eclipse Prediction [Internet], cited 2017 May 29,

available from: https://eclipse.gsfc.nasa.gov/SEgoogle/

SEgoogle2021.html

Hughes SP, Conway DJ, Parker J, Using the general mission

analysis tool (GMAT), NASA Technical Report Server,

GSFC-E-DAA-TN39043 (2017).

JPL, MONTE introduction [Internet], cited 2017 May 29, available

151 http://janss.kr

Youngkwang Kim et al. Deep Space Orbit Determination Software: Overview

from: https://montepy.jpl.nasa.gov

Kim M, Kim Y, Lee E, Park SY, Kim YR, et al., Validation of DSN

measurement model using Lunar Prospector tracking data,

in KSAS 2017 Spring Conference, Samcheok, Republic of

Korea, 19-22 Apr 2017a.

Kim Y, Kim M, Lee E, Park SY, Kim YR, et al., Performance

validation of orbit determination software using Lunar

Prospector tracking data, in KSAS 2017 Spring Conference,

Samcheok, Republic of Korea, 19-22 Apr 2017b.

Lee E, Kim Y, Kim M, Park SY, Kim YR, et al., In/Out function of

orbit determination software and overlap analysis of Lunar

Prospector trajectory, in KSAS 2017 Spring Conference,

Samcheok, Republic of Korea, 19-22 Apr 2017.

Moyer TD, Formulation for Observed and Computed Values

of Deep Space Network Data Types for Navigation (John

Wiley & Sons, Hoboken, 2005).

ODTBX (Orbit Determination Toolbox), Mean meteorological

parameters [Internet], cited 2017 May 29, available from:

https://sourceforge.net/projects/odtbx/

Parker JJK, Hughes SP, A general event location algorithm with

applications to eclipse and station line-of-sight, in AAS/

AIAA Astrodynamics Specialist Conference, Girdwood,

AK, 31 Jul – 4 Aug 2011.

Song YJ, Lee D, Bae JH, Kim BY, et al., Preliminary Design of

LUDOLP: the flight dynamics subsystem for the Korea

pathfinder lunar orbiter mission, in 14th International

Conference on Space Operations, Daejeon, Republic of

Korea, 16-20 May 2016.

Thornton CL, Border JS, Radiometric Tracking Techniques for

Deep-space Navigation (John Wiley & Sons, Hoboken,

2003).

Vankka J, Kestilä A, Sun outage calculator for geostationary

orbit satellites, J. Eng. 26, 21-30 (2014).

Woodburn J, Seago JH, Orbit determination of satellites in

lunar orbit using an optimal sequential filter, in 18th AAS/

AIAA Space Flight Mechanics, Galveston, TX, 27-31 Jan

2008.

Zill DG, Wright WS, Cullen MR, Advanced Engineering Math-

ematics, 4th edition (Jones & Bartlett Learning, Sudbury,

2011).

